MA-310 Linear Algebra

Nazar Khan

PUCIT

10. Inner Product Spaces

Inner Product

We used the dot product of vectors in \mathbb{R}^n to define notions of

- length,
- ► angle,
- distance, and
- orthogonality.

Now we generalize those ideas to any vector space, not just \mathbb{R}^n .

Inner Product

An inner product on a real vector space V is a function that associates a real number $< \mathbf{u}, \mathbf{v} >$ with each pair of vectors in V in such a way that the following 4 axioms are satisfied for all vectors \mathbf{u}, \mathbf{v} , and \mathbf{w} in V and all scalars k.

- 1. $\langle u, v \rangle = \langle v, u \rangle$ [Symmetry]
- 2. < u + v, w > = < u, w > + < v, w >[Additivity]
- 3. $\langle ku, v \rangle = k \langle u, v \rangle$ [Homogeneity]
- 4. $\langle v, v \rangle \geq 0$ and $\langle v, v \rangle = 0$ if and only if v = 0 [Positivity]

A real vector space with an inner product is called a *real inner* product space.

Inner Product Standard

Inner product of two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n was earlier <u>defined</u> using the dot product

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

- This is commonly known as the Euclidean inner product or standard inner product.
- ► Inner product can be <u>defined</u> in other ways as well as long as the defined function satisfies the 4 axioms in the last slide.

Weighted Euclidean Inner Product

Defined as

$$< \mathbf{u}, \mathbf{v}> = w_1 u_1 v_1 + w_2 u_2 v_2 + \cdots + w_n u_n v_n$$

with weights w_1, w_2, \ldots, w_n .

Setting all weights to 1 yields the standard Euclidean inner product.

Weighted Euclidean Inner Product

- ▶ Left figure: Set of points at distance 1 from origin w.r.t standard Euclidean inner product $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2$.
- ▶ Right figure: Set of points at distance 1 from origin w.r.t weighted Euclidean inner product $\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{9}u_1v_1 + \frac{1}{4}u_2v_2$.

Weighted Euclidean Inner Product

- ► Sketch the unit circle in \mathbb{R}^2 w.r.t weighted Euclidean inner product < **u**, **v** $>=\frac{1}{25}u_1v_1+\frac{1}{49}u_2v_2$.
- Find weighted Euclidean inner products on \mathbb{R}^2 for which the "unit circles" are the ellipses shown in the following figures.

Matrix inner product

Defined as

$$\langle \mathbf{u}, \mathbf{v} \rangle = A\mathbf{u} \cdot A\mathbf{v} = (A\mathbf{u})^T A\mathbf{v} = \mathbf{u}^T A^T A\mathbf{v}$$

- ▶ Also called the *inner product on* \mathbb{R}^n *generated by A.*
- ▶ Setting A = I yields the standard Euclidean inner product.
- Setting A as a diagonal matrix yields the weighted Euclidean inner product. Find A for

$$<\mathbf{u},\mathbf{v}>=w_1u_1v_1+w_2u_2v_2+\cdots+w_nu_nv_n.$$

- Can be viewed as standard inner product but after transforming by A.
- Plays a big role in Machine Learning, Image Processing, and Computer Vision.

Angles & Orthogonality In General inner product spaces

We have already seen that angle between two vectors in \mathbb{R}^n can be computed using the dot product as

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||||\mathbf{v}||}\right)$$

- Recall that dot product is a specialized form of inner product which is more general.
- Angle between two vectors in a general inner product space can be computed using the inner product as

$$\theta = \cos^{-1}\left(\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{u}||||\mathbf{v}||}\right)$$

Angles & Orthogonality In General inner product spaces

- ▶ Recall that $-1 \le \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|||\mathbf{v}||} \le 1$.
- ► For general inner products $-1 \le \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1$ also holds.
- ▶ *Norm (or length)* is defined by $||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.
- ▶ Distance between two vectors becomes $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} \mathbf{v}|| = \sqrt{\langle \mathbf{u} \mathbf{v}, \mathbf{u} \mathbf{v} \rangle}.$
- Properties of length and distance also carry over in general spaces.
 - ▶ $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$ (Triangle inequality for vectors)
 - ▶ $d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$ (Triangle inequality for distances)
- $ightharpoonup < \mathbf{u}, \mathbf{v} >= 0$ implies *orthogonality*.
 - Note that orthogonality depends on the definition of the inner product.
 - ▶ Compute $\langle \mathbf{u}, \mathbf{v} \rangle$ for $\mathbf{u} = (1, 1)$ and $\mathbf{v} = (1, -1)$ using standard and weighted Euclidean inner product definitions.

ExampleAngle between square matrices

- We have seen that matrices satisfy the 10 axioms of vector spaces.
- For $n \times n$ matrices, an inner product can be defined as $\langle \mathbf{u}, \mathbf{v} \rangle = \text{trace}(U^T V) = u_{11}v_{11} + u_{22}v_{22} + \cdots + u_{nn}v_{nn}$.
- Find the cosine of the angle between the vectors

$$\mathbf{u} = U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $\mathbf{v} = V = \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix}$

➤ This gives us a method for computing similarities between objects in general vector spaces. *Prerequisite*: inner product needs to be defined first.