MA-310 Linear Algebra

Nazar Khan

PUCIT

11. Gram-Schmidt Process

Orthogonal & Orthonormal Sets

Content in this lecture applies to sets of 2 or more vectors.

- The solution of a problem can often be simplified by choosing a basis with orthogonal basis vectors.
- Further simplification is achieved if the orthogonal vectors are also unit vectors.

A *set* of two or more vectors in a real inner product space is said to be *orthogonal* if all pairs of distinct vectors in the set are orthogonal.

An orthogonal set in which each vector has norm 1 is said to be *orthonormal*.

Roughly, orthonormal = orthogonal + normal.

Nazar Khan Linear Algebra

Orthogonal & Orthonormal Basis

- Recall that any set of n linearly independent vectors constitutes a basis for \mathbb{R}^n .
- ▶ If a set of basis vectors is orthogonal as well, it is called an *orthogonal basis*.
- ▶ If an orthogonal basis is made from unit vectors, it is called an *orthonormal basis*.
- A familiar orthonormal basis is the standard basis for \mathbb{R}^n with the Euclidean inner product:

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \quad \dots \mathbf{e}_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Example

Verify that the following set is orthonormal with respect to the standard Euclidean inner product on \mathbb{R}^3 .

$$\mathbf{u}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{u}_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \quad \mathbf{u}_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Why orthonormal basis?

- Assume $S = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ is a non-orthogonal basis for \mathbb{R}^n .
- ightharpoonup Any vector f u can be represented in S as

$$\mathbf{u}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n$$

which can be written as a linear system $V\mathbf{c} = \mathbf{u}$ and solved for the coefficients c_1, c_2, \ldots, c_n .

- ► Had *S* been orthogonal (or orthonormal), finding the *c_i* would have been much easier.
 - ▶ Orthogonal case: $c_i = \frac{\langle \mathbf{u}, \mathbf{v}_i \rangle}{||\mathbf{v}_i||^2}$.
 - ▶ Orthonormal case: $c_i = \langle \mathbf{u}, \mathbf{v}_i \rangle$.
- Notice the convenience linear system versus simple inner products.

Why orthonormal basis? Proof of orthogonal case

Orthonormal case can now be proven by observing that $||\mathbf{v}_i|| = 1$ if S is an orthonormal basis.

Orthogonal Projection

- ightharpoonup u is a vector in inner product space V.
- ▶ W is a subspace of V.
- ▶ We can express

Orthogonal Projections

- Let W be an r-dimensional subspace of V and let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ be an orthogonal basis for W.
- ▶ $\text{proj}_W u = \frac{\langle u, v_1 \rangle}{||v_1||^2} v_1 + \frac{\langle u, v_2 \rangle}{||v_2||^2} v_2 + \dots + \frac{\langle u, v_r \rangle}{||v_r||^2} v_r.$
- ▶ If basis is orthonormal, then $\operatorname{proj}_{W} \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 > \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 > \mathbf{v}_2 + \cdots + \langle \mathbf{u}, \mathbf{v}_r > \mathbf{v}_r.$

Gram-Schmidt Process

Every nonzero finite-dimensional inner product space has an orthonormal basis.

The Gram-Schmidt Process

To convert a basis $\{u_1,u_2,\ldots,u_r\}$ into an orthogonal basis $\{v_1,v_2,\ldots,v_r\}$, perform the following computations:

Step 1.
$$\mathbf{v}_1 = \mathbf{u}_1$$

Step 2.
$$\mathbf{v}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

Step 3.
$$\mathbf{v}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

$$\begin{array}{l} \textit{Step 4. } v_4 = u_4 - \frac{\langle u_4, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_4, v_2 \rangle}{\|v_2\|^2} v_2 - \frac{\langle u_4, v_3 \rangle}{\|v_3\|^2} v_3 \\ \vdots \end{array}$$

(continue for r steps)

Optional Step. To convert the orthogonal basis into an orthonormal basis $\{q_1, q_2, \dots, q_r\}$, normalize the orthogonal basis vectors.