MA-310 Linear Algebra

Nazar Khan

PUCIT

8. General Vector Spaces

If a set of objects satisfies some basic properties of vectors in \mathbb{R}^n , then those objects can be treated as vectors too.

Axiom: An assumption that is taken to be true without proof. They serve as a starting point.

Time to unlearn what we have been taught!

Nazar Khan Linear Algebra

General Vector Spaces

General Vector Spaces

Any object can be treated as a vector.

Operator '+' can be redefined according to our needs.

Operator 'x' can be redefined according to our needs.

Addition of objects

- Let V be a set of objects and u, v and w be members of this set.
- ► Addition is defined as an operator on objects in V.
- Denoted by the symbol '+'.
- ightharpoonup Result $\mathbf{u} + \mathbf{v}$ of addition is called the *sum*.

Scalar multiplication of objects

- Let k be any scalar.
- ► Scalar multiplication is defined as an operator on objects in V.
- Denoted by the symbol ' \times '.
- Result ku of multiplication is called the product.

So far in your life, V has been the set of real numbers. But what stops it from being a set of other (any) kinds of objects!

Notice that for real vector spaces, $\mathbf{u} + \mathbf{v}$ and $k\mathbf{u}$ were still

- members of V.
- ▶ If the objects in a general set V also satisfy these properties, then they also form a vector space.
- Specifically, to qualify as a vector space, objects in V must satisfy

1.
$$\mathbf{u} + \mathbf{v} \in V$$

Closure under addition

2.
$$u + v = v + u$$

3.
$$u + (v + w) = (u + v) + w$$

4.
$$\mathbf{u} + \mathbf{0} = \mathbf{u}$$
 and $\mathbf{0} \in V$ Zero vector

5.
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$
 for every \mathbf{u} and $-\mathbf{u} \in V$ Negative

Closure under scalar multiplication

7.
$$k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$$

8.
$$(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$$

9.
$$k(m\mathbf{u}) = (km)\mathbf{u}$$

10.
$$1u = u$$

General Vector Spaces

General Vector Spaces

- u could be an n-tuple, a 2-D array (matrix), an N-D array (tensor), an image, a video, a document, an X-ray, a brain-scan, an email, . . .
- As long as the objects satisfy the 10 vector space axioms, they can be treated as vectors in a general vector space.

Examples of sets that are vector spaces

- The zero vector space.
- $ightharpoonup \mathbb{R}^n$.
- $ightharpoonup \mathbb{R}^{\infty}$.
- $ightharpoonup \mathbb{R}^{m \times n}$ the set of all $m \times n$ matrices.
- ► The vector space of real-valued functions.

Examples of sets that are not vector spaces

- $ightharpoonup \mathbb{R}^{n+}$ the set of *n*-tuples of positive real numbers. Why?
- ▶ $V = \mathbb{R}^2$ with scalar multiplication defined as $k\mathbf{u} = (ku_1, 0)$. Why?

Subspaces

Subspaces

A subset W of vector space V is called a *subspace* of V if W is itself a vector space.

- Any subset of a vector space will automatically satisfy axioms 2, 3, 7, 8, 9 and 10.
- ▶ If it satisfies 1 and 6 (additive and multiplicative closures), then it will also satisfy 4 and 5. Why?
 - For $\mathbf{u} \in W$, axiom 6 implies $k\mathbf{u} \in W$.
 - ▶ Setting k = 0 and k = -1 implies $\mathbf{0} \in W$ and $-\mathbf{u} \in W$.
 - Finally axiom 1 then implies axioms 4 and 5 are true.
- ► Therefore, to verify if a subset W of vector space V is a subspace of V, one only needs to verify if objects in W satisfy axioms 1 and 6 (i.e. is W closed under addition and scalar multiplication?).

- $ightharpoonup \mathbb{R}^{2++}$ is a subset but not a subspace of \mathbb{R}^2 .
- \triangleright Any line through the origin is a subspace of \mathbb{R}^2 . All other lines are just subsets since they do not contain a 0 vector.
- ▶ Any line or plane through the origin is a subspace of \mathbb{R}^3 . All other lines and planes are just subsets.
- Symmetric matrices constitute a subspace of the vector space of all square matrices.

W is a not a subspace of \mathbb{R}^2 .

W is a subspace of \mathbb{R}^3 .

W is not subspace of V.

Nazar Khan Linear Algebra

Span

▶ Span of a set of vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r$ is the <u>set of all vectors</u> that can be generated from their *linear combinations*.

$$span(u_1, u_2, ..., u_r) = k_1u_1 + k_2u_2 + \cdots + k_ru_r$$

where the *coefficients* k_i are scalars between $-\infty$ and ∞ .

- ▶ Span of **u** is *k***u** which is a line in the direction of **u**.
- \triangleright Span of **u** an **v** is a plane containing both vectors.
- ▶ Span of standard unit vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ is \mathbb{R}^n .

Testing for Linear Combination

Consider the vectors $\mathbf{u}=(1,2,-1)$ and $\mathbf{v}=(6,4,2)$ in \mathbb{R}^3 . Show that $\mathbf{w} = (9, 2, 7)$ is a linear combination of \mathbf{u} and \mathbf{v} and that $\mathbf{w}' = (4, -1, 8)$ is not a linear combination of \mathbf{u} and \mathbf{v} .

Testing for spanning

Determine whether the vectors

 $\mathbf{v}_1 = (1, 1, 2), \mathbf{v}_2 = (1, 0, 1), and \mathbf{v}_3 = (2, 1, 3)$ span the vector space \mathbb{R}^3

If $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 span \mathbb{R}^3 , then $\mathbf{b} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_3$ should be true for all $\mathbf{b} \in \mathbb{R}^3$. This can be written as

$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

This linear system has a solution for all b if and only if the system matrix is invertible. This one is not. So v_1, v_2 and v_3 do not span \mathbb{R}^3

Linear Independence

Definition

Set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ of two or more vectors in a vector space V, is a *linearly independent set* if no vector in S can be expressed as a linear combination of the others. A set that is not linearly independent is said to be linearly dependent.

Test for linear independence

 ${\cal S}$ is linearly independent if and only if the only coefficients satisfying the vector equation

$$k_1\mathbf{v}_1+k_2\mathbf{v}_2+\cdots+k_r\mathbf{v}_r=\mathbf{0}$$

are
$$k_1 = 0, k_2 = 0, \dots, k_r = 0$$
.

Proof by contradiction.

Linear Independence

Determine whether the vectors $\mathbf{v}_1=(1,-2,3), \mathbf{v}_2=(5,6,-1), \mathbf{v}_3=(3,2,1)$ are linearly independent or not.

Linear Independence

Linear Independence *Geometric Interpretation*

Linear Algebra

Linear Independence

Let $S = \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ be a set of r vectors in \mathbb{R}^n . If r > n, then S must be linearly dependent.

Proof:

The equation $k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \cdots + k_r\mathbf{v}_r = \mathbf{0}$ corresponds to a homogenous linear system with n equations and r unknowns. For r > n, it will have non-trivial solutions and hence the set S will be linearly dependent.

Coordinate Systems

- ▶ We usually work in *rectangular coordinate systems*.
- They are convenient but not necessary.

Coordinates and Basis

Non-rectangular, unequal coordinate systems

Basis

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a set of vectors in a finitedimensional vector space V, then S is called a basis for V if:

- 1. S spans V.
- 2. S is linearly independent.

Examples:

- \triangleright Standard basis for \mathbb{R}^n .
- \triangleright Any set of *n* linearly independent vectors in \mathbb{R}^n . (Show that the vectors $\mathbf{v}_1 = (1, 2, 1), \mathbf{v}_2 = (2, 9, 0), \text{ and } \mathbf{v}_3 = (3, 3, 4)$ form a basis for \mathbb{R}^3 .)
- Standard basis for M_{mn}.

Benefit of Basis

If $S = \{v_1, v_2, \dots, v_n\}$ is a basis for a vector space V, then every vector \mathbf{v} in V can be expressed in the form $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 + c_4 \mathbf{v}_4 + c_5 \mathbf{v}_3 + c_5 \mathbf{v}_4 + c_5 \mathbf{v}_5 + c_5 \mathbf$ $c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n$ in exactly one way.

Proof: S is a basis \implies v can be expressed in *some* way. Assume $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$ and also $\mathbf{v} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_n \mathbf{v}_n$

 $k_2\mathbf{v}_2 + \cdots + k_n\mathbf{v}_n$

Subtracting both leads to $\mathbf{0} = (c_1 - k_1)\mathbf{v}_1 + (c_2 - k_2)\mathbf{v}_2 +$ $\cdots + (c_n - k_n) \mathbf{v}_n$.

Linear independence of $S \implies (c_i - k_i) = 0$. Therefore, there can be exactly one representation of \mathbf{v} in a basis.

Scalers c_1, c_2, \ldots, c_n are called *coordinates* of **v** relative to basis *S*. Vector (c_1, c_2, \dots, c_n) is called the *coordinate vector* of **v** relative to basis S.

Dimension

- ▶ The number of vectors in a basis for V is called the dimension of V.
- Denoted as dim(V).
- ▶ All basis of V must have the same dimension. Why?
- ▶ Zero vector space has dimension 0. That is $dim({\bf 0}) = 0$.
- In engineering as well as computer science, dimension is sometimes referred to as degrees of freedom.

Plus/Minus Theorem

Consequences:

- ▶ If V has dimension n, then for any subset $S = \{v_1, v_2, \dots, v_n\}$, it suffices to check *either* linear independence *or* spanning the remaining condition will hold automatically.
- ▶ If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
- If S is a linearly independent set that is not already a basis for V.

Change of Basis

- A basis that is suitable for one problem may not be suitable for another.
- ▶ So it is common to change from one basis to another.