MA-310 Linear Algebra

Nazar Khan
PUCIT
8. General Vector Spaces

If a set of objects satisfies some basic properties of vectors in \mathbb{R}^{n}, then those objects can be treated as vectors too.

Axiom: An assumption that is taken to be true without proof. They serve as a starting point.

Time to unlearn what we have been taught!

General Vector Spaces

Any object can be treated as a vector.

Operator ' + ' can be redefined according to our needs.

Operator ' \times ' can be redefined according to our needs.

Addition of objects

- Let V be a set of objects and \mathbf{u}, \mathbf{v} and \mathbf{w} be members of this set.
- Addition is defined as an operator on objects in V.
- Denoted by the symbol ' + '.
- Result $\mathbf{u}+\mathbf{v}$ of addition is called the sum.

Scalar multiplication of objects

- Let k be any scalar.
- Scalar multiplication is defined as an operator on objects in V.
- Denoted by the symbol ' \times '.
- Result ku of multiplication is called the product.

So far in your life, V has been the set of real numbers. But what stops it from being a set of other (any) kinds of objects!

General Vector Spaces

- Notice that for real vector spaces, $\mathbf{u}+\mathbf{v}$ and $k \mathbf{u}$ were still members of V.
- If the objects in a general set V also satisfy these properties, then they also form a vector space.
- Specifically, to qualify as a vector space, objects in V must satisfy

1. $\mathbf{u}+\mathbf{v} \in V \quad$ Closure under addition
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{u}+\mathbf{0}=\mathbf{u}$ and $\mathbf{0} \in V$

Zero vector
5. $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$ for every \mathbf{u} and $-\mathbf{u} \in V \quad$ Negative
6. $k u \in V$

Closure under scalar multiplication
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $\mathbf{1 u}=\mathbf{u}$

General Vector Spaces

- u could be an n-tuple, a 2-D array (matrix), an N-D array (tensor), an image, a video, a document, an X-ray, a brain-scan, an email, ...
- As long as the objects satisfy the 10 vector space axioms, they can be treated as vectors in a general vector space.

Examples of sets that are vector spaces

- The zero vector space.
- \mathbb{R}^{n}.
- \mathbb{R}^{∞}.
- $\mathbb{R}^{m \times n}$ - the set of all $m \times n$ matrices.
- The vector space of real-valued functions.

Examples of sets that are not vector spaces

- \mathbb{R}^{n+} - the set of n-tuples of positive real numbers. Why?
- $V=\mathbb{R}^{2}$ with scalar multiplication defined as $k \mathbf{u}=\left(k u_{1}, 0\right)$. Why?

Subspaces

A subset W of vector space V is called a subspace of V if W is itself a vector space.

- Any subset of a vector space will automatically satisfy axioms $2,3,7,8,9$ and 10.
- If it satisfies 1 and 6 (additive and multiplicative closures), then it will also satisfy 4 and 5 . Why?
- For $\mathbf{u} \in W$, axiom 6 implies $k \mathbf{u} \in W$.
- Setting $k=0$ and $k=-1$ implies $0 \in W$ and $-\mathbf{u} \in W$.
- Finally axiom 1 then implies axioms 4 and 5 are true.
- Therefore, to verify if a subset W of vector space V is a subspace of V, one only needs to verify if objects in W satisfy axioms 1 and 6 (i.e. is W closed under addition and scalar multiplication?).

Subspaces

- \mathbb{R}^{2++} is a subset but not a subspace of \mathbb{R}^{2}.
- Any line through the origin is a subspace of \mathbb{R}^{2}. All other lines are just subsets since they do not contain a 0 vector.
- Any line or plane through the origin is a subspace of \mathbb{R}^{3}. All other lines and planes are just subsets.
- Symmetric matrices constitute a subspace of the vector space of all square matrices.

W is a not a subspace of \mathbb{R}^{2}.

W is a subspace of \mathbb{R}^{3}.

W is not subspace of V.

Span

- Span of a set of vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}$ is the set of all vectors that can be generated from their linear combinations.

$$
\operatorname{span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right)=k_{1} \mathbf{u}_{1}+k_{2} \mathbf{u}_{2}+\cdots+k_{r} \mathbf{u}_{r}
$$

where the coefficients k_{i} are scalars between $-\infty$ and ∞.

- Span of \mathbf{u} is $k \mathbf{u}$ which is a line in the direction of \mathbf{u}.
- Span of \mathbf{u} an \mathbf{v} is a plane containing both vectors.
- Span of standard unit vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is \mathbb{R}^{n}.

Testing for Linear Combination

Consider the vectors $\mathbf{u}=(1,2,-1)$ and $\mathbf{v}=(6,4,2)$ in \mathbb{R}^{3}. Show that $\mathbf{w}=(9,2,7)$ is a linear combination of \mathbf{u} and \mathbf{v} and that $\mathbf{w}^{\prime}=(4,-1,8)$ is not a linear combination of \mathbf{u} and \mathbf{v}.

Testing for spanning

Determine whether the vectors
$\mathbf{v}_{1}=(1,1,2), \mathbf{v}_{2}=(1,0,1)$, and $\mathbf{v}_{3}=(2,1,3)$ span the vector space \mathbb{R}^{3}.
If $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} span \mathbb{R}^{3}, then $\mathbf{b}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+k_{3} \mathbf{v}_{3}$ should be true for all $\mathbf{b} \in \mathbb{R}^{3}$. This can be written as

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

This linear system has a solution for all \mathbf{b} if and only if the system matrix is invertible. This one is not. So $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} do not span \mathbb{R}^{3}.

Linear Independence

Definition

Set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ of two or more vectors in a vector space V, is a linearly independent set if no vector in S can be expressed as a linear combination of the others. A set that is not linearly independent is said to be linearly dependent.

Test for linear independence
S is linearly independent if and only if the only coefficients satisfying the vector equation

$$
k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{r} \mathbf{v}_{r}=\mathbf{0}
$$

are $k_{1}=0, k_{2}=0, \ldots, k_{r}=0$.

Proof by contradiction.

Linear Independence

Determine whether the vectors
$\mathbf{v}_{1}=(1,-2,3), \mathbf{v}_{2}=(5,6,-1), \mathbf{v}_{3}=(3,2,1)$ are linearly independent or not.

Linear Independence

Geometric Interpretation

(a) Linearly dependent

(a) Linearly dependent

(b) Linearly dependent

(b) Linearly dependent

(c) Linearly independent

(c) Linearly independent

Linear Independence

> Let $S=\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ be a set of r vectors in \mathbb{R}^{n}. If $r>n$, then S must be linearly dependent.

Proof:

The equation $k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{r} \mathbf{v}_{r}=\mathbf{0}$ corresponds to a homogenous linear system with n equations and r unknowns. For $r>n$, it will have non-trivial solutions and hence the set S will be linearly dependent.

Coordinate Systems

- We usually work in rectangular coordinate systems.
- They are convenient but not necessary.

Coordinates of P in a rectangular coordinate system in 2-space.

Coordinates of P in a nonrectangular coordinate system in 2-space.

Non-rectangular, unequal coordinate systems

Equal spacing Perpendicular axes

Unequal spacing Perpendicular axes

Unequal spacing Skew axes

Basis

If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a set of vectors in a finitedimensional vector space V, then S is called a basis for V if:

1. S spans V.
2. S is linearly independent.

Examples:

- Standard basis for \mathbb{R}^{n}.
- Any set of n linearly independent vectors in \mathbb{R}^{n}. (Show that the vectors $\mathbf{v}_{1}=(1,2,1), \mathbf{v}_{2}=(2,9,0)$, and $\mathbf{v}_{3}=(3,3,4)$ form a basis for \mathbb{R}^{3}.)
- Standard basis for $M_{m n}$.

Benefit of Basis

If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then every vector \mathbf{v} in V can be expressed in the form $\mathbf{v}=c_{1} \mathbf{v}_{1}+$ $c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}$ in exactly one way.
Proof: S is a basis $\Longrightarrow \mathbf{v}$ can be expressed in some way. Assume $\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}$ and also $\mathbf{v}=k_{1} \mathbf{v}_{1}+$ $k_{2} \mathbf{v}_{2}+\cdots+k_{n} \mathbf{v}_{n}$.
Subtracting both leads to $\mathbf{0}=\left(c_{1}-k_{1}\right) \mathbf{v}_{1}+\left(c_{2}-k_{2}\right) \mathbf{v}_{2}+$ $\cdots+\left(c_{n}-k_{n}\right) v_{n}$.
Linear independence of $S \Longrightarrow\left(c_{i}-k_{i}\right)=0$. Therefore, there can be exactly one representation of v in a basis.

Scalers $c_{1}, c_{2}, \ldots, c_{n}$ are called coordinates of v relative to basis S. Vector $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is called the coordinate vector of v relative to basis S.

Dimension

- The number of vectors in a basis for V is called the dimension of V.
- Denoted as $\operatorname{dim}(V)$.
- All basis of V must have the same dimension. Why?
- Zero vector space has dimension 0 . That is $\operatorname{dim}(\{\mathbf{0}\})=0$.
- In engineering as well as computer science, dimension is sometimes referred to as degrees of freedom.

Plus/Minus Theorem

The vector outside the plane can be adjoined to the other two without affecting their linear independence.

Any of the vectors can be removed, and the remaining two will still span the plane.

Either of the collinear vectors can be removed, and the remaining two will still span the plane.

Consequences:

- If V has dimension n, then for any subset $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$, it suffices to check either linear independence or spanning the remaining condition will hold automatically.
- If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
- If S is a linearly independent set that is not already a basis for V.

Dimension

Geometric view

Change of Basis

- A basis that is suitable for one problem may not be suitable for another.
- So it is common to change from one basis to another.

