MA-250 Probability and Statistics

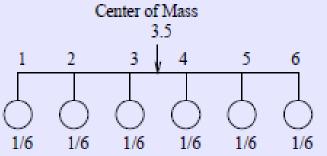
Nazar Khan PUCIT Lecture 21

- One of the central components of probability theory.
- 3 ways to look at it
 - 1. Long term ordinary average
 - 2. Centre of mass
 - 3. Weighted average
- For continuous R.V with density function $f_X(x)$ E[X] = $\int_{x \in labels} x f_X(x)$
- For discrete R.V with density function P(X)

$$\mathsf{E}[\mathsf{X}] = \Sigma_{\mathsf{x} \in \mathsf{labels}} \mathsf{x} \mathsf{P}(\mathsf{X} = \mathsf{x})$$

- In Matlab, mean(randi([1,6], 1000000, 1)) generates 1 million integers uniformly distributed between 1 and 6 and takes their average.
 - Simulates average of 1 million rolls of a fair die.
- When I ran this command 10 times, my values Were [3.5005 3.5034 3.4973 3.5019 3.4988 3.4965 3.5029 3.4997 3.5011 3.5054]
- Expected value is what we expect this average to be.

- For the experiment on the previous slide, let X be the face value on a roll of a fair die.
- X ∈ {1, 2, 3, 4, 5, 6} with each face having equal chance of occurrence.
- The resulting probability density of X is given by P(X=x)=1/6 for x=1,2,...,6.
- E[X] = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = 3.5
 - This is a weighted average
 - This is also the long term ordinary average that the previous Matlab command will converge to as number of trials approaches infinity.
 - This is also the centre of mass



• Note that E[X] is not necessarily one of the labels that random variable X can take.

Expectation of a Function of a Random Variable

- Quite often in real world problems, a random variable Y=h(X) is a function of some other random variable X.
- If density f_x is known, how can we find E(Y)?
- $E[Y] = \sum_{y \in labels} y P(Y=y) = \sum_{x \in labels} h(x) P(X=x)$

Expectation of a Function of a Random Variable

- Let X be the number of heads in two tosses of a fair coin.
 - $X \sim Binomial(2, 1/2).$
- Let Y = 1/(X+1).
 - That is, h(t) = 1/(t+1) is the function that transforms X into Y.
- To find E[Y] we can
 - first find the density of Y and then use the definition of expectation, OR
 <u>w</u> HH HT TH TT

$$- E[Y] = \sum_{x \in labels} h(x) P(X=x)$$

ω	HH	HT	TH	TT
$\mathbb{P}(\{\omega\})$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$X(\omega)$	2	1	1	0
$Y(\omega)$	$\frac{1}{2+1}$	$\frac{1}{1+1}$	$\frac{1}{1+1}$	$\frac{1}{0+1}$

Linearity Property of Expectation

- <u>Addition</u>: $E[h_1(X)+h_2(X)] = E[h_1(X)) + E(h_2(X)]$
- Scalar Multiplication: E[ah₁(X)] = aE[h₁(X)]
- Linearity: E[ah₁(X)+bh₂(X)] = aE[h₁(X)] + bE[h₂(X)]

Prove all 3 properties.

Moments of a R.V

- E[X^k] is called the kth moment of random variable X.
- $E[X^k] = \sum_{x \in labels} x^k P(X=x)$

Variance and Standard Deviation

 The quantity E[X²]-E[X]² is called the variance of random variable X.

- Denoted as Var(X).

Square root of variance is called the standard deviation of X.

– Denoted as Std(X)=sqrt(Var(X)).

• Find E[(X-E(X))²]?

Statistics of Binomial(n,p)

 Let X~Binomial(n,p). Find E(X), Var(X) and Std(X).

Common Densities

 Means and variances of some of the commonly used <u>discrete</u> random variables

Random Variable	$\mathbb{E}(X)$	Var(X)
$X \sim B(n, p)$	np	np(1-p)
$X \sim Poisson(\lambda)$	λ	λ
$X \sim Geometric(p)$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
$X \sim NB(p,m)$	$\frac{m(1-p)}{p}$	$\frac{m(1-p)}{p^2}$
$X \sim Hypergeometric(G,B,n)$	$\frac{nG}{G+B}$	$\frac{nGB}{(G+B)^2}\left(1-\frac{n-1}{G+B-1}\right)$

Common Densities

 Means and variances of some of the commonly used <u>continuous</u> random variables

Random Variable	$\mathbb{E}(X)$	Var(X)
$X \sim Uniform(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$X \sim Exp(\lambda)$	$1/\lambda$	$1/\lambda^2$
$X \sim G(\lambda, \alpha)$	$lpha/\lambda$	$lpha/\lambda^2$
$X \sim \chi^2_{(m)}$	m	2m
$X \sim Beta(a,b)$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$
$X \sim N(a,b^2)$	a	b^2