MA-250 Probability and Statistics

Nazar Khan

PUCIT

Lecture 26

LAW OF LARGE NUMBERS

Law of Large Numbers

- The average of a large number of observations of a random variable X converges to the expected value E(X).
- Abbreviated as LLN.

Application of LLN

Monte Carlo Method for Integration

- Let required integral under curve f(x) from a to b be region A.
 - Area(A)=required integral.
- Let sample space S be a bounding rectangle with height M and width a to b.
 - Area(S)=M(b-a)
- Let random variable X be 1 when a randomly chosen point lies in region A and 0 otherwise.
 - P(X=1)=P(A)=area(A)/area(S)
 - P(X=0)=1-P(A)

Application of LLN

Monte Carlo Method for Integration

- E(X)=0*P(X=0) + 1*P(X=1) = P(X=1) = P(A)
- But we can estimate E(X) via LLN.
 - Randomly choose a large number of points from S and take the average of the corresponding values of random variable X.
- So area(A)=E(X)*area(S) $\approx ((x_1+x_2+...+x_N)/N) / (M*(b-a))$

CENTRAL LIMIT THEOREM

Independent and Identically Distributed

- A set of random variables $X_1,...,X_N$ is
 - Independent if no random variable has any influence on any other random variable.
 - $P(X_1X_2 ... X_N) = P(X_1)P(X_2)...P(X_N)$
 - Identically distributed if all random variables have the same probability density function.
 - $\bullet \ f_{Xi}(x) = f_{Xj}(x)$
 - Probability that random variable X_i takes a value x is the same as the probability that random variable X_j takes the value x.
- Abbreviated as i.i.d variables.

- Natural phenomenon can be treated as random.
- Many of them can be treated as sums of other random phenomenon.

$$-Y = X_1 + X_2 + ... + X_N$$

 The Central Limit Theorem (CLT) gives us a way of finding the probability density of a sum of random variables Y.

- Let $X_1,...,X_N$ a set of i.i.d random variables with mean μ and variance σ^2 .
- Let $Y = X_1 + X_2 + ... + X_N$
- Central Limit Theorem (CLT):

As $N \rightarrow \infty$, probability density of the sum Y approaches a <u>normal distribution</u> with mean $N\mu$ and variance $N\sigma^2$.

 Notice that the X_is could have any common distribution, yet the distribution of Y will converge to the normal distribution.

Equivalent formulations of CLT:

- 1. As $N \rightarrow \infty$, probability density of the sum Y approaches a <u>normal distribution with mean $N\mu$ and variance $N\sigma^2$.</u>
- 2. As $N \rightarrow \infty$, probability density of the average Y_{avg} approaches a <u>normal distribution with mean μ and variance σ^2/N . (H.W: Derive this from 1.)</u>
- 3. As $N \rightarrow \infty$, probability density of the $(Y_{avg} \mu)/(\sigma/N^{1/2})$ approaches the <u>standard normal distribution</u> (mean O and variance O). (H.W: Derive this from O).

How large should N be?

 General agreement among statisticians that N>=50 is good enough for most purposes.

Normal approximation of other distributions

- If X~Binomial(n,p), for large values of n, the random variable (X-np)/sqrt(np(1-p)) follows N(0,1).
- Similarly for other distributions
 - Poisson
 - Uniform
 - etc.

Find the probability of getting between 8 to
 12 heads in 20 tosses of a fair coin.

Continuity Correction

- When approximating a discrete distribution with the Normal distribution (which is continuous), it is useful to perform a continuity correction.
 - $-P(a \le X \le b) \approx P(a-0.5 \le X' \le b+0.5)$

 Find the probability of getting between 8 to 12 heads in 20 tosses of a fair coin. Use continuity correction.

Products of Random Variables

- Expectation: If X and Y are independent, then
 E(XY)=E(X)E(Y).
- Covariance: $Cov(X,Y)=E[(X-\mu_X)(Y-\mu_Y)]$
- Correlation coefficient: $\rho(X,Y) = E[(X-\mu_X)/\sigma_X(Y-\mu_Y)/\sigma_Y]$
- Alternatively,
 - $-Cov(X,Y)=E(XY)-\mu_X\mu_Y$
 - $-\rho(X,Y)=Cov(X,Y)/\sigma_X\sigma_Y$