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Regression

e For bivariate data, we have studied that the
correlation coefficient measures the spread of

the data.
* Now we want to know how to predict the
value of one variable from the other variable.

* The method for doing this is called the
regression method.




Regression

 Describes how one variable y depends on
another variable x.

e Example:

— Taller men usually weigh more. We want to know by

how much the weight increases for a unit increase in
height?

— Data was collected for 471 men aged 18-24 and is
summarised using a scatter diagram.

— The scatter diagram itself can be summarised using

* the 2 means, average height ~ 70 inches,  SD ~ 3 inches
e the 2 SDs, and average weight ~ 180 pounds, SD %45 pounds, r ~ 0.40

* the correlation coefficient.



average height ~ 70 inches, ~ SD ~ 3 inches

average weight ~ 180 pounds, SD & 45 pounds, r % 0.40
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Most men with 1SD above average height have
less than 1SD above average weight. Why?




The Regression Method

Most men with 1SD above average height have less than 1SD above
average weight. Why?

— Because height and weight are not well-correlated (r=0.4).
When x increases by 1 SDx, y increases by r*1 SDy.
— Forr =1, 1SDx increase in x would imply 1SDy increase iny.
— For r=0, 1SDx increase in x would imply OSDy increase in y.
This is called the regression method for determining an average value of y

from a given value of x. Figure 2. Regression method. When x goes up by one SD, the average
value of y only goes up by r SDs.
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average height ~ 70 inches,  SD ~ 3 inches
average weight ~ 180 pounds, SD & 45 pounds, r % 0.40
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The Regression Line

 The regression line for y on x estimates the average
value fory carresponding to each value of x.
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Determining weight from height

o ~ i «— | Men with The SD line. All
: “h'!'lsD points on this
=07 HEE height P line are an

Point of averages (u,, 1,

315

: equal number
T E I | of SDs away
270 - - - = - .
A L from the point
of averages

(:uhll"lw)

WEIGHT (POUNDS)

225

73 76 79 82
HEIGHT (INCHES)

We learned in the last lecture that a scatter
diagram can be summarised using these 5
statistics.

average height ~ 70 inches,  SD ~ 3 inches
average weight ~ 180 pounds, SD ~ 45 pounds, r ~ 0.40

Most men with 1SD above average height have
less than 1SD above average weight. Why?




Regression

e Remember, all the analysis so far has been for linear
relationships between variables.

e If the variables are related in a non-linear way, then
correlation and regression do not make sense.
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The regression line is a smoothed version of the graph of averages.
If the graph of averages follows a straight line, that line is the re-
gression line.

Figure 3. The graph of averages. Shows average weight at each height
for the 471 men age 18-24 in the HANESS sample. The regression line

smooths this graph.
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Example 1. A university has madé a statistical analysis of the relationship
between Math SAT scores (ranging from 200 to 800) and first-year GPAs (ranging
from 0 to 4.0), for students who complete the first year. The results:

average SAT score = 550, SD = 80
average first-year GPA = 2.6, SD =06, r =04

The scatter diagram is football-shaped. A student is chosen at random, and has an
SAT of 650. Predict this individual’s first-year GPA.

Solution. This student is 100/80 = 1.25 SDs above average on the SAT.
The regression estimate for first-year GPA is, above average by 0.4 x 1.25 = 0.5
SDs. That’s 0.5 x 0.6 = 0.3 GPA points. The predicted GPA is 2.6 + 0.3 = 2.9.



Example 2. (This continues example 1.) Suppose the percentile rank of one
student on the SAT is 90%, among the first-year students. Predict his percentile
rank on first-year GPA. The scatter diagram is football-shaped. In particular, the
SAT scores and GPAs follow the normal curve.
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This student scored 1.3 SDs above average on the SAT. The regression method
predicts he will be 0.4 x 1.3 & 0.5 SDs above average on first-year GPA. Finally,
this can be translated back into a percentile rank:

A~ =

0.5

)

That is the answer. The percentile rank on first-year GPA is predicted as 69%.



The Regression Fallacy

A preschool program tries to boost children’s 1Qs. Children are tested when
they enter the program (the pre-test), and again when they leave (the post-test).
On both occasions, the scores average out to nearly 100, and the SD is about 15.
The program seems to have no effect. A closer look at the data, however, shows
something very surprising. The children who were below average on the pre-test

had an average gain of about 5 IQ points at the post-test. Conversely, those chil-
dren who were above average on the pre-test had an average loss of about 5 points.

e What does this prove?

— Nothing. This is just the regression effect.

* In most try-retry scenarios, the bottom group will on average improve and the
top group will on average fall back.

e Why?
— Chance error
— Observation = True value + Chance error

— To think otherwise is incorrect — the regression fallacy.




The Regression Fallacy

Your exam score = true score + luck

If you score very low on the first try, you might
have been unlucky on some question.
— Negative chance error.

Next time there is lesser chance to be equally
unlucky again.

So, on average, the lower scoring group will
iImprove.

Question: explain the case for a very high score
on the first try.




2 Regression Lines

Figure 8. The left hand panel shows the regression of weight on height;
the right hand panel, height on weight. The SD line is dashed.
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Example 3. 1Q scores are scaled to have an average of about 100, and an
SD of about 15, both for men and for women. The correlation between the IQs of
husbands and wives is about 0.50. A large study of families found that the men
whose IQ was 140 had wives whose 1Q averaged 120. Look at the wives in the
study whose IQ was 120. Should the average IQ of their husbands be greater than
120? Answer yes or no, and explain briefly.
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The r.m.s error to the regression line

* Regression error = actual - predicted value

® Irm.S error =

\/ef+e§+---+e§

n

— Compare with SD formula.

e Tells you how far typical points are above or

below the regression line.

Weight
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Also called a residual




The r.m.s error to the regression line

e Generally, the rm.s error also follows the 68-
95-99 rule.
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A quicker rm.s formula

e A quicker alternative formula for r.m.s. error
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For oval shaped scatters, prediction errors will be similar in size here and here and in
fact, all along the regression line.




Normal approximation within a strip

In any vertical strip, think of the y values as a
new dataset.

Compute mean using the regression method.

SD is roughly equal to the r.m.s error to the
regression line.

Allows you to use the normal approximation!



Normal approximation within a strip

Figure 10. A football-shaped scatter diagram. Take the points inside a
narrow vertical strip. Their y-values are a new data set. The new average
is given by the regression method. The new SD is given by the r.m.s. error
of the regression line. Inside the strip, a typical y-value is around the new
average—give or take the new SD.

New average

New SD




Example 1. A law school finds the following relationship between LSAT
scores and first-year scores (for students who finish the first year):

average LSAT score = 162, SD =6
average first-year score = 68, SD =10, r =0.60

The scatter diagram is football-shaped.

(a) About what percentage of the students had first-year scores over 757
(b) Of the students who scored 165 on the LSAT, about what percentage had
first-year scores over 757

Solution. Part (a). This is a straightforward normal approximation prob-
lem. The LSAT results and » have nothing to do with it.
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e For part (b), use the normal approximation.

— estimate the new average using the regression
method (answer 71)

— estimate the new SD using the r.ms.
approximation (answer 8)

— find appropriate area under normal curve



Summary

* For variables x and y with correlation
coefficientr, a k SD increase in X is
associated with an r*k SD increase in .

e Plotting these regression estimates fory
from x gives the regression line for y on x.

— Can be used to predict y from x.




Summary

e Regression effect: In most try-retry scenarios,
pottom group improves and top group falls
oack.

— This is due to chance errors.

— To think otherwise is known as the regression
fallacy.

 There are 2 regression lines on a scatter
diagram.



Summary

e The r.m.s error to the regression line measures
the accuracy of the regression predictions.

— Generally follows the 68-95-99 rule.

* For oval-shaped scatter diagrams, data inside

a narrow vertical strip can be approximated
using a normal curve.



