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GMM Parameter Estimation

Gaussian Mixture Models

I We have already seen that multi-modal densities cannot be
modelled via a uni-modal Gaussian.

I They can be modelled via mixtures of Gaussians which are
simply linear superpositions of uni-modal Gaussians

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

where the mixing coefficients πk satisfy

0 ≤ πk ≤ 1
K∑

k=1

πk = 1

I We will now derive the mixture density p(x) using latent
variables.
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Gaussian Mixture Models
Latent Variable View

I Similar to the K-means approach, let us append our observed
variable x with a latent variable z using 1-of-K coding.

I Using elementary probability

p(x) =
∑
z

p(x, z) =
∑
z

p(z)p(x|z)

I However, this time we use probabilities (soft assignment)

p(zk = 1) = πk

I Due to the 1-of-K representation

p(z) =
K∏

k=1

πzkk

and conditional probability

p(x|z) = p(x|zk = 1) = N (x|µk ,Σk)
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Gaussian Mixture Models
Latent Variable View

I Therefore, the latent variable view also yields the Gaussian
Mixture Model (GMM)

p(x) =
∑
z

p(x, z) =
∑
z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk ,Σk)

I More importantly, complicated/multi-modal p(x) has been
modelled using simple/uni-modal p(x|z).

I This powerful idea extends beyond Gaussian mixtures.
I Mixtures of insert_your_favourite distribution.
I Mixtures of linear regression.
I Mixtures of logistic regression.
I . . .
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Gaussian Mixture Models
Responsibilities

I p(x) is the marginal density that we are looking to model.
I p(x|zk = 1) is the component conditional density. That is,

probability density of x according to component k .
I p(zk = 1) is the prior probability of component k .
I p(zk = 1|x) is the posterior probability of component k .

I Can be viewed as the responsibility that component k takes for
explaining observation x.

I Can be computed via Bayes’ theorem

p(zk = 1|x) = p(zk = 1)p(x|zk = 1)∑K
j=1 p(zj = 1)p(x|zj = 1)

=
πkN (x|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)

I We will denote responsibility by rk = p(zk = 1|x).
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Gaussian Mixture Models
Parameter Estimation

I The latent variable view of GMMs suggests iterative,
alternating optimisation.

I Given i.i.d. data {x1, . . . , xN} and an integer K > 1, find
mixing coefficients {πk} and Gaussian parameters {µk} and
{Σk}.

I Likelihood is given by
∏N

n=1
∑K

k=1 πkN (xn|µk ,Σk).

I Log-likelihood is given by
∑N

n=1 ln
(∑K

k=1 πkN (xn|µk ,Σk)
)
.

I Notice that the summation in the mixture model prevents the
natural logarithm from cancelling out the Gaussian
exponential. So, no closed form solution.

I Solution 1: Gradient ascent.
I Solution 2: Alternating optimisation.
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Gaussian Mixture Models
Estimation of µk

I Using maximum likelihood

0 ≡ ∂ ln p(X|π,µ,Σ)

∂µk

=⇒ 0 = −
N∑

n=1

πkN (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj)︸ ︷︷ ︸

rnk

Σk(xn − µk)

=⇒ µk =

∑N
n=1 rnkxn∑N
n=1 rnk

=

∑N
n=1 rnkxn
Nk

I Notice the similarity with K-means. The only difference here is
that the hard assignments have been replaced by soft
responsibilities.
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Gaussian Mixture Models
Estimation of Σk

I Similarly

0 ≡ ∂ ln p(X|π,µ,Σ)

∂Σk

=⇒ Σk =
1
Nk

N∑
n=1

rnk(xn − µk)(xn − µk)
T

I This is similar to the result for fitting a single Gaussian but
now each data point is weighted by the responsibility rnk .
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Gaussian Mixture Models
Estimation of πk

I Maximisation with respect to πk is a constrained maximisation
since πk correspond to probability values.

I So we maximise the Lagrangian

L(X,π,µ,Σ, λ) = ln p(X|π,µ,Σ) + λ

(
K∑

k=1

πk − 1

)

by setting the gradient to 0

0 ≡ ∂L(X,π,µ,Σ)

∂πk

=⇒ 0 =
N∑

n=1

N (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj)

+ λ
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GMM Parameter Estimation

I Multiplying both sides by πk and then summing both sides
over k yields λ = −N.

I Substituting λ = −N and rearranging yields

πk =
Nk

N

I In words, mixing coefficient for component k is given by the
average responsibility that it takes for explaining the training
data points.
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Gaussian Mixture Models
Parameter Estimation

I Notice that solutions for µk ,Σk and πk are dependent on the
responsibilities rnk .

I However, the responsibilities depend on µk ,Σk and πk .
I We can now present the alternating optimisation algorithm for

GMMs.
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Alternating Optimisation for GMMs

Data: Data points {x1, . . . , xN}, integer K > 1.
Result: Component parameters {µk ,Σk}, mixing coefficients {πk}

1. Choose some initial values for µk ,Σk , πk

2. Fix parameters, update responsibilities rnk = πkN (x|µk ,Σk )∑K
j=1 πjN (x|µj ,Σj )

3. Fix responsibilities, update parameters

µnew
k =

∑N
n=1 rnkxn
Nk

where Nk =
N∑

n=1

rnk

Σnew
k =

1
Nk

N∑
n=1

rnk(xn − µnew
k )(xn − µnew

k )T

πnew
k =

Nk

N
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Alternating Optimisation for GMMs

4. Evaluate log-likelihood

ln p(X|π,µ,Σ) =
N∑

n=1

ln

(
K∑

k=1

πkN (xn|µk ,Σk)

)

and check for convergence of either log-likelihood or
parameters. If not converged, return to step 2.
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Alternating Optimisation for GMMs

I Each iteration increases (or retains) the value of the
log-likelihood.

I Therefore, convergence to (local) maximum is guaranteed.
I This algorithm has a name – Expectation Maximisation (EM).

I We will cover it in detail in next lecture.

I Converges slower than K-means and performs more
computations per-iteration.

I Usually a good idea to initialise EM by the result of K-means.
I Set µk to the k-th K-means cluster center.
I Set Σk to the data covariance matrices for k-th K-means

cluster.
I Set πk to the fraction of points assigned by K-means to cluster

k .
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Alternating Optimisation for GMMs
Singularity Avoidance

I Log-likelihood equals infinity if any Gaussian component
‘collapses ’to a training data point. (Why?)

I This represents a pathological condition or singularity.
I Care must be taken to check if that has happened or is close

to happening.
I If so, the collapsing component should be reset to some other

randomly chosen µk and large Σk and the optimisation should
proceed as before.

Nazar Khan Advanced Machine Learning



GMM Parameter Estimation

Assignment 6
EM for Gaussian Mixture Model

I Density estimation via Gaussian Mixture Model (GMM).
I Code up a generic implementation of learning a GMM via the

EM algorithm in function
[mixing_coefs,means,covariance_mats]=learn_gmm(X,K)
where X is a D × N data matrix and K is the number of
Gaussian components.

I Regenerate Figure 9.8 in Bishop’s book.
I Submit your_roll_number_GMM.zip containing

I code,
I generated image, and
I report.txt/pdf explaining your results.

I Due Wednesday, May 16, 2018 before 5:30 pm on \\printsrv.
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