
CS-667 Advanced Machine Learning

Nazar Khan

PUCIT

Mixture Density Networks



Inverse Problems Mixture Density Networks Formulation Training

Forward and Inverse Problems

I Goal of supervised learning: model conditional distribution
p(t|x).

I For simple regression problems p(t|x) is assumed to be
Gaussian.

I However, practical machine learning problems can have
significantly non-Gaussian distributions.
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Forward Problems

Figure: Successful neural network learning of a uni-modal forward
problem (tn = xn + 0.3 sin(2πxn) + ε) using SSE function.
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Inverse Problems

Figure: Unsuccessful neural network learning of a multi-modal inverse
problem (roles of tn and xn reversed). Reason for failure: Training NN
with SSE function implies t ∼ N . However, for multi-modal inverse
problems t � N and the learned model is a very poor fit of the
underlying model.
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Mixture Density Networks

Figure: Mixture density network. Outputs are the mixture parameters
θ(x) corresponding to input x. Difference from earlier approaches:
Instead of learning parameters θ, we learn NN weights w that produce
parameters θ(x) that model the density conditioned on input x.
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The Formulation

I We will assume continuous targets and isotropic Gaussian
components.

I The likelihood for one data point (x, t) can be written as

p(t|x) =
K∑

k=1

πk(x)N (t|µk(x), σ2
k(x)I)

I The component densities need not be isotropic Gaussians.
I They can be chosen according to the problem at hand (e.g

Bernoulli densities if target t is a binary random variable).
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The Network

I Let t ∈ RD .
I Size of input layer determined by size of x.
I Number and sizes of hidden layers are hyperparameters.
I Output layers will consist of

1. K neurons representing the mixing coefficients
π1(x), . . . , πK (x).

2. KD neurons representing the mean vectors µ1(x), . . . ,µK (x).
3. K neurons representing the widths of the Gaussian kernels

σ1(x), . . . , σK (x).
Therefore, size of output layer will be
K + KD + K = K (D + 2).
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The Network

I For the 3 types of output neurons, we will use the following
notation

1. aπk – activation of neuron representing k-th mixing coefficient.
2. aµkj – activation of neuron representing j-th component of k-th

mean vector.
3. aσk – activation of neuron representing standard deviation of

k-th Gaussian.
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Modelling the outputs

I Mixing coefficients must satisfy 0 ≤ πk(x) ≤ 1 and also∑K
k=1 πk(x) = 1. This can be achieved via softmax outputs

πk(x) =
ea

π
k∑K

i=1 e
aπi

I Means have no constraints and can be modelled directly as

µkj(x) = aµkj

I Standard deviations must satisfy σk(x) ≥ 0 and can be
modelled as

σk(x) = ea
σ
k
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Training
Likelihood

I Given training data pairs {xn, tn}, the goal now will be to
learn the weights w of the neural network so that it outputs
K (D + 2) parameters
π1(xn,w), . . . , πK (xn,w),
µ1(xn,w), . . . ,µK (xn,w) and
σ1(xn,w), . . . , σK (xn,w)
that maximize the likelihood of targets given inputs.

w∗ = argmax
w

N∏
n=1

p(tn|xn,w)

= argmax
w

N∏
n=1

K∑
k=1

πk(xn,w)N (tn|µk(xn,w), σ2
k(xn,w)I)
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Training
Negative log-likelihood

I Negative log-likelihood can be written as

E (w) = −
N∑

n=1

ln

{
K∑

k=1

πk(xn,w)N (tn|µk(xn,w), σ2
k(xn,w)I)

}

= −
N∑

n=1

ln

{
K∑

k=1

πnkNnk

}
for notational clarity

I All that is required to initiate backpropagation are the partial
derivatives ∂En

∂aπk
, ∂En

∂aµkj
and ∂En

∂aσk
.
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Training
Derivatives

∂En

∂aπk
=
−
∑K

j=1 πnj(δjk − πnk)Nnj∑K
j=1 πnjNnj

= −
K∑
j=1

πnjNnj(δjk − πnk)∑K
j=1 πnjNnj

= −
K∑
j=1

rnj(δjk − πnk)

= −rnk + πnk

K∑
j=1

rnj︸ ︷︷ ︸
=1

= πnk − rnk
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Training
Derivatives

∂En

∂aµkj
=
−πnk ∂Nnk

∂aµkj∑K
i=1 πniNni

=
−πnk ∂Nnk

∂µnkj

∂µnkj
aµkj∑K

i=1 πniNni

=
−πnkNnk

{
−(tnj−µnkj )(−1)

σ2
nk

}
∑K

i=1 πniNni

= rnk

{
µnkj − tnj
σ2
nk

}
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Training
Derivatives

∂En

∂aσk
=
−πnk ∂Nnk

∂aσk∑K
i=1 πniNni

=
−πnk ∂Nnk

∂σnk
∂σnk
∂aσk∑K

i=1 πniNni

= rnk

{
1− ‖tn − µnk‖2

σ2
nk

}
Take-home Quiz 6
I Show that

∂Nnk

∂σnk
= Nnk

{
‖tn − µnk‖2

σ3
nk

− 1
σnk

}
to prove the formula for ∂En

∂aσk
provided above.

Please note that Equation (5.157) in Bishop’s book is incorrect.
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Figure: Mixing coefficients πk(x). At both small and large values of x
where p(t|x) is uni-modal, only one mixture component has a larger role.
For intermediate values of x where the density is tri-modal, all 3 mixing
coefficients have comparable values.
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Figure: Means µk(x).
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Figure: Contours of p(t|x). Higher density at more certain (uni-modal)
outputs

.
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Obtaining a unique answer

Figure: Approximate modes of conditional density p(t|x) by using the
mean of the component with the highest πk(x).
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