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Inverse Problems

Forward and Inverse Problems

» Goal of supervised learning: model conditional distribution
p(t[x).

» For simple regression problems p(t|x) is assumed to be
Gaussian.

» However, practical machine learning problems can have
significantly non-Gaussian distributions.

Nazar Khan Advanced Machine Learning



Inverse Problems

Forward Problems
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Figure: Successful neural network learning of a uni-modal forward
problem (t, = x, + 0.3sin(27x,) + €) using SSE function.
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Inverse Problems

Inverse Problems
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Figure: Unsuccessful neural network learning of a multi-modal inverse
problem (roles of t, and x, reversed). Reason for failure: Training NN
with SSE function implies t ~ N. However, for multi-modal inverse
problems t = N and the learned model is a very poor fit of the
underlying model.
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Mixture Density Networks

Mixture Density Networks

Figure: Mixture density network. Outputs are the mixture parameters
0(x) corresponding to input x. Difference from earlier approaches:
Instead of learning parameters 0, we learn NN weights w that produce
parameters 6(x) that model the density conditioned on input x.
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Formulation

The Formulation

We will assume continuous targets and isotropic Gaussian
components.

The likelihood for one data point (x,t) can be written as

K
p(tlx) = > ()N (tlpk(x), oz (x)1)
k=1
The component densities need not be isotropic Gaussians.

They can be chosen according to the problem at hand (e.g
Bernoulli densities if target t is a binary random variable).
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Formulation

The Network

> Let t € RP.
» Size of input layer determined by size of x.

» Number and sizes of hidden layers are hyperparameters.
» Output layers will consist of
1. K neurons representing the mixing coefficients

T1(%), .-, ().

2. KD neurons representing the mean vectors p1(x), . .., ek (x).

3. K neurons representing the widths of the Gaussian kernels
o1(x),...,0k(x).

Therefore, size of output layer will be
K+ KD+ K = K(D +2).
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Formulation

The Network

» For the 3 types of output neurons, we will use the following
notation
1. aj — activation of neuron representing k-th mixing coefficient.
2. af(‘j — activation of neuron representing j-th component of k-th
mean vector.
3. a7 — activation of neuron representing standard deviation of
k-th Gaussian.
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Formulation

Modelling the outputs

» Mixing coefficients must satisfy 0 < mx(x) < 1 and also
Zszl mk(x) = 1. This can be achieved via softmax outputs

T
e

Tk (X) = K ar

D i1 €™

» Means have no constraints and can be modelled directly as
_
1k (X) = a;

» Standard deviations must satisfy o,(x) > 0 and can be
modelled as

oi(x) = e
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Training

Trainin
Likelihoo

» Given training data pairs {x,, t,}, the goal now will be to
learn the weights w of the neural network so that it outputs

K(D + 2) parameters

7Tl(xn7 W)7 000 ’ﬂ—K(Xna W)v
/f’*l(xm W)a 000 7/1'K(XI77 W) and
01(Xn, W), ..., 0Kk (Xn, W)

that maximize the likelihood of targets given inputs.

w* = arg max H p(tn|xn, w)
n=1

—argmaXHZM X WA (| 2k (%0, W), 02 (X0, W)1)
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Training

Trainin
Negative log-likelihood

» Negative log-likelihood can be written as

N K
E(w) == In 3> " m(xn, WN (ta] i (xn, W), 07 (Xn, W)1)
k=1

n=1
N K
= — Z In {Z Fnk/\/nk} for notational clarity
n=1 k=1
» All that is required to initiate backpropagation are the partial

: c OE, O0E, OE,
derivatives 835,8% and 522
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Training

Training
Derivatives

aEn - ZJKzl 7Tnj(5jk - Trnk)-/\/‘n'
Oaj, Zszl TnilNoj
K

5 TniNnj (Ojk — Tnk)
EjK:I TnjiNnj

j=1

K
=— Z rnj(Ojk — Tnk)
j=1

K
= —rnk + Tnk E Inj
Jj=1

1

= Tnk — I'nk
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Training
Derivatives

o 8/\/’,,k o aNnk 8anj
8En T nk aaz_ T nk 3“nkj ak

83/151 ZK_l (YA ; ZKzl i A
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O nk

Training
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Training

Training
Derivatives

. ON i o ON i 00 i
OE, Tnk~Hag Tk Do, Day

o K - K
Oag SN TaiNpi Yl TailNai

t — 2
oy fo- Lozl
O nk

Take-home Quiz 6
» Show that

ON, t, — fokll? 1
k:Nnk{H?M_}

aO'nk Unk O nk

to prove the formula for gff provided above.

Please note that Equation (5.157) in Bishop's book is incorrect.
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Training

(@

Figure: Mixing coefficients mx(x). At both small and large values of x
where p(t|x) is uni-modal, only one mixture component has a larger role.
For intermediate values of x where the density is tri-modal, all 3 mixing
coefficients have comparable values.
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Training

(b)

Figure: Means px(x).
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Training

(©

Figure: Contours of p(t|x). Higher density at more certain (uni-modal)
outputs
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Training

Obtaining a unique answer

(d)

Figure: Approximate modes of conditional density p(t|x) by using the
mean of the component with the highest 7 (x).
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