
Project

I Explore and solve an interesting problem using ML on a
real-world data set.

I 4 deliverables
Proposal Start of 5th week 1 page
Milestone 1 week after mid-term exams 3-4 pages
Poster/Presentation Two weeks before final exams
Final report One week before final exams 6-8 pages (NIPS format)

I Project ideas
I http://cs229.stanford.edu/projects2016.html
I http://cs229.stanford.edu/projects2015.html
I http://cs229.stanford.edu/projects2014.html
I www.cs.cmu.edu/~10701/projects.html
I www.kaggle.com
I Discuss with me

http://cs229.stanford.edu/projects2016.html
http://cs229.stanford.edu/projects2015.html
http://cs229.stanford.edu/projects2014.html
www.cs.cmu.edu/~10701/projects.html
www.kaggle.com
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Proposal

I Maximum 1 page description containing
I Project title
I Data set
I Project idea (approximately two paragraphs).
I Software you will need to write or tool/libraries you will need

to learn.
I Papers to read. Include 1-3 relevant papers. You will probably

want to read at least one of them before submitting your
proposal.

I Milestone description. What experimental results will you
complete by the middle of the semester?

I Proposal will be rejected if you do not have the dataset
available already.
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Milestone

I Short report of 3-4 pages.
I Same sections as the final report (introduction, related work,

method, experiment, conclusion), with a few sections "under
construction".

I Specifically,
I the introduction and related work sections should be in their

final form
I the section on the proposed method should be almost finished
I the sections on the experiments and conclusions will have

whatever results you have obtained, as well as "place-holders"
for the results you plan/hope to obtain.
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Poster and Presentation

I https://www.sharelatex.com/learn/Posters
I https://www.sharelatex.com/templates/presentations

Nazar Khan Advanced Machine Learning
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Final report

I Must be in NIPS format and page limit.
I https://www.sharelatex.com/templates/journals/

neural-information-processing-systems-(nips)
-conference-2016

I Think of it as a research paper being submitted to NIPS.
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Machine Learning So Far ...

Machine Learning

Supervised

Classification Regression

Unsupervised

Clustering Density
Estimation

Parametric Non-parametric

Histograms Kernel-based Nearest-neighbours

Dimensionality
Reduction
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Linear Models for Classification

I Discriminant Functions
I Least Squares (w∗ via pseudoinverse)
I Fisher’s Linear Discriminant (w∗ = argmaxw

wTSBw
wTSW w )

I Perceptron (wnew = wold + ηtnφn for every misclassified
sample xn)

I Generative Models
I p(Ck |φ) = p(φ|Ck )p(Ck )

p(φ) = p(φ|Ck )p(Ck )∑
j p(φ|Cj )p(Cj )

I Model class-conditional densities p(φ|Ck) and the priors p(Ck)
from data.

I We will not cover such models because
1. they require too many parameters for high dimensional inputs
2. perform poorly when assumed density models do not represent

the data properly.
I Discriminative Models

I Since classification is based on posterior p(Ck |φ), model it
directly.
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Background Math
The Perceptron

f (a) =

{
1 if a > 0
0 if a ≤ 0

where a = wTφ. Note that the perceptron function is
non-differentiable.
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Background Math
Logistic Sigmoid Function

I For a ∈ R, the logistic sigmoid function is given by
σ(a) = 1

1+e−a

I Sigmoid means S-shaped.
I Maps −∞ ≤ a ≤ ∞ to the range 0 ≤ σ ≤ 1. Also called

squashing function.
I Can be treated as a probability value.
I Symmetry σ(−a) = 1− σ(a). Prove it.
I Easy derivative σ′ = σ(1− σ). Prove it.

a

σ(a)

0.5
1
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Background Math
Softmax Function

I For real numbers a1, . . . , aK , the softmax function is given by
eak∑
j e

aj .

I Softmax is ≈ 1 when ak >> aj ∀j 6= k and ≈ 0 otherwise.
I Provides a smooth (differentiable) approximation to finding

the index of the maximum element.
I Compute softmax for 1, 10, 100.
I Does not work everytime.

I Compute softmax for 1, 2, 3. (Solution: scale-up/scale-down)
I Compute softmax for 1, 10, 1000. (Solution: subtract/add)

I Also called the normalized exponential function (for obvious
reasons).

I Can be treated as probability values.
I Show that ∂yk

∂aj
= yk(δjk − yj). You must know this in order

to understand later parts of the course.
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Background Math
Positive Definite Matrices

I A square matrix M is positive definite if for every non-zero
vector x, xTMx > 0.

I Positive semidefinite for the condition xTMx ≥ 0.
I In 1D, a function f is convex if its second derivative f ′′ is

always positive. This proves existence of unique, global
minimum.

I In more than 1D, a function f is convex if its Hessian matrix
(of second derivatives) H is positive definite. This proves
existence of unique, global minimum.
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Stochastic Gradient Descent

I Gradient is a direction in parameter space that gives maximum
increase in the value of a function.

I Moving in negative gradient direction leads towards local
minimum.

I For E (X ,T ,w) =
∑N

n=1 E (xn, tn,w), we can reach w∗ using
I Batch gradient descent: wnew = wold − η∇wE
I Stochastic gradient descent: wnew = wold − η∇wEn where n is

a single, randomly chosen data point.
I Stochastic gradient descent using mini-batches:

wnew = wold − η∇wEB where B is a small batch of randomly
chosen data points.
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Discriminative Models for Classification
Logistic Regression

I For two classes, model via logistic sigmoid.
I p(C1|φ) = σ(wTφ+ w0).
I Leads to logistic regression for learning w∗ and w∗0 .

I For more than two classes, model via softmax.
I p(Ck |φ) = ew

T
k φ+wk0∑

j e
wT
j
φ+wj0

.

I Leads to multiclass logistic regression for learning w∗k and w∗k0.

I In the following, we will absorb the bias term w0 into the
parameter vector w and add a constant input φ0(x) = 1 so
that we can write activation simply as a = wTφ.
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Logistic Regression
Formulation

I Assume i.i.d. data {φn, tn}N1 with binary targets tn ∈ {0, 1}.
I Model outputs via logistic sigmoid as

yn = p(C1|φn) = σ(wTφn).
I Likelihood can be written as

p(t1, . . . , tN |w) =
N∏

n=1

y tnn (1− yn)
1−tn

I Negative log-likelihood becomes

E (w) = − ln p(t1, . . . , tN |w) = −
N∑

n=1

tn ln yn + (1− tn) ln(1− yn)

which is also called the cross-entropy error function.
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Logistic Regression
Gradient

I Gradient can be written as (Prove it)

∇wE (w) =
N∑

n=1

(yn − tn)φn =
N∑

n=1

errorn × inputn

I Now stochastic gradient descent (SGD) can be used to find
w∗.

I However, the error function E (w) is convex and therefore has
a unique global minimum.

I Instead of gradient descent, we can use the more efficient
iterative scheme known as the Newton-Raphson method.
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Logistic Regression
Newton-Raphson Updates

I Newton-Raphson update for minimising any function E (w) is
given as

wτ+1 = wτ −H−1∇wE (w)

where H is the Hessian matrix composed of second derivatives
∂2E

∂wi∂wj
.

I To apply Newton-Raphson updates to the cross-entropy error,
we need the gradient ∇wE (w) as well as the Hessian

H = ∇w∇wE (w) =
N∑

n=1

yn(1− yn)φnφ
T
n

I Notice that Hessian H depends on the current estimate wτ

through its dependence on the yn.
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Logistic Regression
Newton-Raphson Updates

I Take-home Quiz 1: Using matrix-vector notation, show that
1. The gradient can be written as ΦT (y− t) where Φ is the

N ×M design matrix, y is the vector of per-sample outputs
and similarly for targets t.

2. The Hessian H can be written as ΦTRΦ where R is a diagonal
N × N matrix with elements Rnn = yn(1− yn).

3. H is positive definite.
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Logistic Regression
Newton-Raphson Updates

I We can now write the Newton-Raphson updates for
minimising the cross-entropy error

wτ+1 = wτ −H−1∇wE (w)

= wτ − (ΦTRΦ)−1ΦT (y− t)

= (ΦTRΦ)−1(ΦTRΦ)wτ − (ΦTRΦ)−1ΦT (y− t)

= (ΦTRΦ)−1
{
(ΦTRΦ)wτ −ΦT (y− t)

}
= (ΦTRΦ)−1ΦT {RΦwτ − (y− t)}
= (ΦTRΦ)−1ΦT

{
RΦwτ − RR−1(y− t)

}
= (ΦTRΦ)−1ΦTR

{
Φwτ − R−1(y− t)

}︸ ︷︷ ︸
z

= (ΦTRΦ)−1ΦTRz
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Logistic Regression
Iterative Reweighted Least Squares

I This is the same as the solution to argminw ||R(Φw − z)||2
which is a weighted least squares problem.

I How is it weighted least squares?.
I Show that the solution is (ΦTRΦ)−1ΦTRz?.

I So the iterative Newton-Raphson updates correspond to
weighted least squares with weight matrix R.

I But weights depend on current wτ and therefore
weights are recomputed for every iteration.

I Therefore, these Newton-Raphson iterations are known as the
iterative reweighted least squares (IRLS) algorithm.
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Assignment 1
Iterative Reweighted Least Squares for Logistic Regression

I Implement the IRLS algorithm for logistic regression.
I Code up a generic implementation.
I Train it to classify between digits 3 and 8 from the MNIST

digits training data.
I Relevant material has been placed on \\printsrv.
I Each sample is a 784× 1 vector that represents a 28× 28

image. To visualise the k-th training sample as an image, you
may use the following commands:
imagesc(reshape(train_x(k,:),28,28)’);
axis image;
colormap gray;

I Report classification accuracy and confusion matrix on the
testing data for the relevant classes.

I Submit your_roll_number_LR.zip containing code and
report.txt/pdf explaining your results.

I Due Wednesday (March 07, 2018 before 5:30 pm) on
\\printsrv.
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Logistic Regression Tips

I In case you are having memory issues or training takes a lot of
time, you might want to use the following tips:

I Type in the command ’doc spdiags’
I Do not use the inv() function to for matrix inverse. Use the

\ operator. For more help, consult Google or Matlab
documentation.

I Also, don’t forget to homogenise the inputs by appending a 1
at the end of each input. This will absorb the bias term.

I Lastly, if you start getting a warning message like "Warning:
Matrix is close to singular or badly scaled"

I First look at the difference between Exercises 1.1 and 1.2 from
Chapter 1 and their solutions.

I Then look at the programming solutions to both problems. We
have done both the exercises as well as their programming
solutions in CS 567.
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Multiclass Logistic Regression
Formulation

I For K > 2 classes, model posterior via softmax.

p(Ck |φn) = ynk =
eank∑
j e

anj
=

ewT
k φn∑

j e
wT

j φn

I Trick to avoid ∞∞ : use ynk = eank−m∑
j e

anj−m where

m = max(an1, . . . , anK ). (How will ynk be correct now?)
I Assume i.i.d. data {φn, tn}N1 using 1-of-K coding for tn.
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Multiclass Logistic Regression
Formulation

I Likelihood can be written as

p(t1, . . . , tN |W) =
N∏

n=1

K∏
k=1

p(Ck |φn)
tnk =

N∏
n=1

K∏
k=1

y tnknk

I Negative log-likelihood becomes

E (w) = − ln p(t1, . . . , tN |W) = −
N∑

n=1

K∑
k=1

tnk ln ynk

which is also called the cross-entropy error function for
multiclass classification.
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Multiclass Logistic Regression
Gradient

I Gradient is given by

∇wjE (W) = −
N∑

n=1

K∑
k=1

tnk
ynk

∂ynk
∂anj

danj
dwj

= −
N∑

n=1

K∑
k=1

tnk
ynk

ynk(δjk − ynj)φn

=
N∑

n=1

(ynj − tnj)φn =
N∑

n=1

errorn × inputn︸ ︷︷ ︸
as for log. reg.

I This allows us to use SGD.
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Multiclass Logistic Regression
Hessian

I As before, batch alternative is IRLS where the Hessian matrix
can be computed in blocks of size M ×M via

∇wk
∇wjE (W) =

N∑
n=1

ynk(δjk − ynj)φnφ
T
n

I The Hessian is positive definite and therefore multiclass
logistic regression too is a convex optimisation problem and
has a unique, global minimiser W∗.

I Newton-Raphson updates are

Wτ+1 = Wτ −H−1∇WE (W)

I Note, however, that for high-dimensional spaces, SGD
might be a better option memory-wise.
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Assignment 2
SGD for Multiclass Logistic Regression

I Implement the SGD algorithm for multiclass logistic regression.

I Code up a generic implementation.
I Train it on the MNIST digits training data.
I Report classification accuracy and confusion matrix on the

testing data.

I Submit your_roll_number_MLR.zip containing code and
report.txt/pdf explaining your results.

I Due on Wednesday (March 14, 2018 before 5:30 pm) on
\\printsrv.
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