
CS-667 Advanced Machine Learning

Nazar Khan

PUCIT

Neural Networks

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Machine Learning So Far ...

Machine Learning

Supervised

Classification Regression

Unsupervised

Clustering Density
Estimation

Parametric Non-parametric

Histograms Kernel-based Nearest-neighbours

Dimensionality
Reduction

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks

I So far, we have learned w∗ for mapping inputs x ∈ RD to
targets t.

I Often, working in a transformed space φ ∈ RM makes it easier
to learn the mapping.

I However, not all mappings are useful for the problem at hand.
Is there an optimal mapping φ∗?

I Neural networks learn the optimal mapping φ∗ and also the
optimal parameters w∗.

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks
The Neuron

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

I The function of a biological neuron can be modelled as
y = f

(∑
j wjxj + b

)
.

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks
The Neuron

I Model the output of the k-th neuron as
yk = f (ak) = f (wT

k x) = f
(∑

j wkjxj

)
where

I The xj constitute values of input signals feeding into the
neuron.

I The wkj are weights determining the importance given to input
xj by this neuron.

I Dot-product ak =
∑

j wkjxj is called the activation.
I f (·) is called the activation function. Determines behaviour of

the neuron in response to its activation.

I The perceptron that we studied earlier is a very simple neuron
model with f being the step function.

f (a) =

{
1 if a ≥ 0
0 if a < 0

(1)

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks

I The linear models that we covered can be represented as

yk(x,W) = f (wT
k φ(x)) = f

 M∑
j=0

wkjφj(x)

where yk is the k-th output and index j starts from 0 to reflect
bias inclusion.

f =

identity for regression
logistic sigmoid for binary classification
softmax for multiclass classification

I Each φj(x) can be seen as a basis function.
I So far, the basis functions were fixed. Now we adapt them to

the problem.

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks

I Model φj(x) as a non-linear function h(aj) where activation
aj = wT

j x with adjustable parameters wj .
I So the k-th output can be written as

yk(x,W) = f (ak) = f (wT
k φ(x)) = f

 M∑
j=0

wkjφj(x)

= f

 M∑
j=0

wkjh(aj)

= f

 M∑
j=1

wkjh

(
D∑
i=0

wjixi

)

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

These computations can be visualised graphically as forward
propagation of information through the so-called neural network.

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks

A two-layer neural
network.

I 3 neuron types:
I input xi
I hidden zj
I output yk

I 2 weight layers:
I hidden-input w (1)

ji

I output-hidden w
(2)
kj

I To differentiate between different
layer parameters, we can write

yk(x,W) = f

 M∑
j=1

w
(2)
kj h

(
D∑
i=0

w
(1)
ji xi

)

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks
As Multilayer Perceptrons

I The computation yk(x,W) = f
(∑M

j=1 w
(2)
kj h

(∑D
i=0 w

(1)
ji xi

))
can be viewed in two stages:
1. Compute zj = h(wT

j x), followed by
2. yk = f (wT

k z).
I Both stages resemble the perceptron model.
I Therefore, another name for such neural networks is multilayer

perceptrons or simply MLP .
I However, there is a key difference:

I Perceptron uses a non-differentiable step-function non-linearity.
I MLP uses a differentiable sigmoidal non-linearity. So we can

train via gradient based approaches.

I Therefore, despite the name, MLPs never use perceptrons!

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks
As Universal Approximators

I Neural networks are considered to be universal approximators.
I A two-layer network with linear outputs can uniformly

approximate any continuous function on a compact input
domain to arbitrary accuracy.

I Provided that the network has a sufficiently large number of
hidden units.

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks for Regression
Univariate

I In the polynomial fitting example from Chapter 1, given inputs
and targets {xn, tn}, we wanted to find the optimal parameters
w∗ of the polynomial that best fits the data.

I Assuming i.i.d data and tn ∼ N (y(xn,w), β−1), we wrote the
likelihood function whose maximisation corresponded to
minimisation of the SSE function

E (w) =
1
2

N∑
n=1

(y(xn,w)− tn)
2

I By replacing the polynomial in function y(xn,w) by the neural
network function, we can minimise E (w) to find optimal
parameters w∗ of the neural network.

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks for Regression
Multivariate

I Similarly, for multivariate targets, assuming multivariate
Gaussian density leads to the SSE function

E (w) =
1
2

N∑
n=1

||y(xn,w)− tn||2

where yk = ak = wT
k x.

I Notice and prove that

∂En

∂ak
= (ykn − tkn)︸ ︷︷ ︸

errorn

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks for Classification
Binary

I Similarly, for binary classification, we can assume a Bernoulli
distribution on targets which leads to minimisation of the
cross-entropy function

E (w) = −
N∑

n=1

(tn ln y(xn,w) + (1− tn) ln(1− y(xn,w)))

where y(xn,w) = P(C1|xn) = σ(a) = σ(wTxn).
I Notice (and prove) that

∂En

∂a
= (yn − tn)︸ ︷︷ ︸

errorn

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks for Classification
Multiclass

I For multiclass classification, we can minimise the multiclass
cross-entropy function

E (w) = −
N∑

n=1

K∑
k=1

(tkn ln yk(xn,w))

where yk(xn,w) = P(Ck |xn) = eak∑K
j=1 e

aj
and ak = wT

k x.

I Notice (and prove) that

∂En

∂ak
= (ykn − tkn)︸ ︷︷ ︸

errorn

I In the following we will denote the error ∂E
∂ak

as δk .

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Networks for Classification

I Note that we can learn classifiers via SSE minimisation also,
but the cross-entropy formulations
1. can be derived probabilistically,
2. train faster, and
3. generalise better.

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Optimisation

I For optimisation, we notice that w∗ must be a stationary point
of E (w).

I Minimum, maximum, or saddle point.
I A saddle point is where gradient vanishes but point is not an

extremum (Example).

I The goal in neural network minimisation is to find a local
minimum.

I A global minimum, even if found, cannot be verified as
globally minimum.

I Due to symmetry, there are multiple equivalent local minima.
Reaching any suitable local minimum is the goal of neural
network optimisation.

I Since there are no analytical solutions for w∗, we use iterative,
numerical procedures.

Nazar Khan Advanced Machine Learning

http://mathcatalog.tumblr.com/post/77619843777/studygeek-without-mathematics-you-wouldnt-have

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Optimisation

I Options for iterative optimisation
I Online methods

I Stochastic gradient descent
I Stochastic gradient descent using mini-batches

I Batch methods
I Batch gradient descent
I Conjugate gradient descent
I Quasi-Newton methods

I Online methods
I converge faster since parameter updates are more frequent, and
I have greater chance of escaping local minima because

stationary point w.r.t to whole data set will generally not be a
stationary point w.r.t an individual data point.

I Batch methods: Conjugate gradient descent and quasi-Newton
methods

I are more robust and faster than batch gradient descent, and
I decrease the error function at each iteration until arriving at a

minimum.

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Backpropagation

I For all gradient based methods, however, we must first
compute the gradient ∇wE (w).

I We have seen that many error functions of practical interest
can be written as a sum of terms

E (w) =
N∑

n=1

En(w)

I So the essential gradient is ∇wEn(w) which we write in its
complete form ∇wE (y(xn,w)).

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Multivariate Chain Rule

I The chain rule of differentiation states

df (u(x))

dx
=

df

du

du

dx

I The multivariate chain rule of differentiation states

df (u(x),v(x))

dx
=
∂f

∂u

du

dx
+
∂f

∂v

dv

dx

I Backpropagation is just an application of the multivariate
chain rule.

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Backpropagation

I For the output layer weights

∂E (yk(ak(wkj)))

∂wkj
=
∂E

∂ak

∂ak
∂wkj

= δkzj

I For the hidden layer weights, using the multivariate chain rule

∂

∂wji
E (y1(a1(zj(aj(wji)))),y2(a2(zj(aj(wji)))), . . . ,yk(ak(zj(aj(wji)))))

=
∂E

∂aj

∂aj
∂wji

=
K∑

k=1

∂E

∂ak︸︷︷︸
δk

∂ak
∂zj︸︷︷︸
wkj

∂zj
∂aj︸︷︷︸
h′(aj)︸ ︷︷ ︸

δj

∂aj
∂wji︸︷︷︸
xi

= δjxi

I For each layer, notice the familiar form

gradient = error× input

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Backpropagation

I It is important to note that

δj = h′(aj)
K∑

k=1

δkwkj

yields the error δj at hidden neuron j by backpropagating the
errors δk from all output neurons that use the output of
neuron j .

I More generally, compute error δj at a layer by backpropagating
the errors δk from next layer.

I Hence the names error backpropagation, backpropagation, or
simply backprop.

I Very useful machine learning technique that is
not limited to neural networks.

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Backpropagation

δ
(1)
j = h′(aj)

K∑
k=1

δ
(2)
k wkj

y1 ←− t1

y2 ←− t2
δ
(1)
1

δ
(2)
1

δ
(2)
2

w
(2)
11

w
(2)
21

Figure: Visual representation of backpropagation of delta values of layer
l + 1 to compute delta values of layer l .

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Backpropagation
Learning Algorithm

1. Forward propagate the input vector xn to compute activations
and outputs of every neuron in every layer.

2. Evaluate δk for every neuron in output layer.
3. Evaluate δj for every neuron in every hidden layer via

backpropagation.
4. Compute derivative of each weight ∂E

∂w via δ×input.
5. Update each weight via gradient descent w τ+1 = w τ − η ∂E∂w .

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Background Math
A (−1, 1) sigmoidal function

I Since range of logistic sigmoid σ(a) is (0, 1), we can obtain a
function with (−1, 1) range as 2σ(a)− 1.

I Another related function with (−1, 1) range is the tanh
function.

tanh(a) = 2σ(2a)− 1 =
ea − e−a

ea + e−a

where σ is applied on 2a.
I Preferred over logistic sigmoid as activation function h(a) of

hidden neurons. (Read Yann LeCun’s "Efficient Backprop"
paper to understand why.)

I Just like the logistic sigmoid, derivative of tanh(a) is simple:
1− tanh2(a). (Prove it.)

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Backpropagation
A Simple Example

I Two-layer MLP for multivariate regression from RD −→ RK .
I Linear outputs yk = ak with SSE En = 1

2
∑K

k=1(yk − tk)
2.

I M hidden neurons with tanh(·) activation functions.

Forward propagation

aj =
D∑
i=0

w
(1)
ji xi

zj = tanh(aj)

yk =
M∑
j=0

w
(2)
kj zj

δk = yk − tk

Backpropagate

δj = (1− z2
j)

K∑
k=1

w
(2)
kj δk

I Compute derivatives ∂En

∂w
(1)
ji

= δjxi and ∂En

∂w
(2)
kj

= δkzj .

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Backpropagation
Verifying Correctness

I Numerical derivatives can be computed via finite central
differences

∂En

∂wji
=

En(wji + ε)− En(wji − ε)
2ε

+ O(ε2)

I Analytical derivatives computed via backpropagation must be
compared with numerical derivatives for a few examples to
verify correctness.

I Any implementation of analytical derivatives (not just
backpropagation) must be compared with numerical
derivatives.

I Notice that we could have avoided backpropagation and
computed all required derivatives numerically.

I But cost of numerical differentiation is O(W 2) while that of
backpropagation is O(W) where W is the total number of
weights (and biases) in the network. (Why?)

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Regularization in Neural Networks

I Recall that over-fitting can be lessened via regularization.
1. Decrease model complexity.

1.1 Penalise magnitudes of weights: Ẽ(w) = E(w) + λ
2 wTw.

1.2 Separately penalise magnitudes of weights of each layer:
Ẽ(w) = E(w) +

∑L
l=1

λl
2 w(l)Tw(l).

1.3 Dropout: During training, a randomly selected subset of
activations are set to zero within each layer.

1.4 DropConnect: During training, a randomly selected subset of
weights within the network are set to zero.

2. Early stopping by checking E (w) on a validation set. Stop
when error on validation set starts increasing.

3. Training with augmented/transformed data.
4. Batch Normalization (to be covered in the Deep Learning

lecture).
5. Building invariance into the network structure (to be covered

in the Convolutional Neural Networks lecture).

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Dropout vs. DropConnect

Figure: Dropout vs. DropConnect2. Image taken from
https://cs.nyu.edu/~wanli/dropc/

2Wan et al., ‘Regularization of Neural Network using DropConnect’.
Nazar Khan Advanced Machine Learning

https://cs.nyu.edu/~wanli/dropc/

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Assignment 3
Backpropagation for MLPs

I Implement the backpropagation algorithm for training an MLP.

I Code up a generic implementation.
I Verify correctness of analytical derivatives.
I Part 1: Regression

I Understand the experiment and network used for Figure 5.3 in
Bishop’s book.

I Regenerate Figure 5.3 using your implementation.
I Part 2: Classification

I Replace the Multiclass Logistic Regression module from
Assignment 2 by a neural network with

1. 1 hidden layer of 50 neurons
2. 2 hidden layers of 50 neurons each
3. 3 hidden layers of 50 neurons each

and report results of each network on the same MNIST
dataset.

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Assignment 3
Backpropagation for MLPs

I Submit your_roll_number_MLP.zip containing
I code,
I generated image for Part 1,
I accuracies and confusion matrices for Part 2,
I report.txt/pdf explaining your results.

I Due Tuesday (March 21, 2018 before 5:30 pm) on \\printsrv.

Nazar Khan Advanced Machine Learning

Introduction NNs for Regression NNs for Classification Optimisation Backpropagation Regularization

Neural Network Tips

I Use a global structure
I layers{l}.w, layers{l}.a, layers{l}.y
I layers{l}.delta, layers{l}.dw
I layers{l}.eta, layers{l}.afunc
I . . .

I Modularity
I layers=fprop(layers,X,t)
I layers=bprop(layers)
I check_gradients(layers,X,t)
I layers=update_weights(layers)

I Matrix-vector implementation will keep your code concise and
readable (a = W Tx).

Nazar Khan Advanced Machine Learning

	Introduction
	NNs for Regression
	NNs for Classification
	Optimisation
	Backpropagation
	Regularization

