CS-667 Advanced Machine Learning

Nazar Khan

PUCIT

Deep Learning

Lecture slides assisted by Arbish Akram.

Deep Learning

- *Deep network*: A neural network with more than 1 hidden layers.
- Why use a fancy new name?
 - Standard methods of training neural networks are not useful when a network becomes deep.
 - Main problem: reduced flow of information through the layers (forward, backward or both).
 - Lead to slow or no learning at all, especially for the earlier layers.
- Three main innovations.
 - 1. Better activation functions.
 - 2. Better weight initializations.
 - 3. Better normalization of inputs.
- Overall goal: Maintain forward as well as backward flow of information.

Problems with sigmoidal neurons

- ► For large |a|, sigmoid value approaches either 0 or 1. This is called *saturation*.
- ▶ When the sigmoid saturates, the gradient approaches zero.
- Neurons with sigmoidal activations stop learning when they saturate.
- When they are not saturated, they are almost linear.
- There is another reason for the gradient to approach zero during backpropagation.

Vanishing Gradients

- Notice that gradient of the sigmoid is always between 0 and $\frac{1}{4}$.
- Now consider the backpropagation equation.

$$\delta_j = \underbrace{h'(a_j)}_{\leq \frac{1}{4}} \sum_{k=1}^{K} w_{kj} \delta_k$$

where δ_k will also contain *at least* one factor of $\leq \frac{1}{4}$.

- This means that values of δ_j keep getting smaller as we backpropagate towards the early layers.
- ► Since gradient = δ×input, the gradients also keep getting smaller for the earlier layers. Known as the vanishing gradients problem.
- Therefore, while the network might be deep, learning will not be deep.

1. Better Activation Functions

Name	Formula	Plot	Derivative	Comments
Logistic sigmoid	$\frac{1}{1+e^{-a}}$,	f(a)(1-f(a))	Vanishing gradients
Hyperbolic tangent	tanh(<i>a</i>)		$1- {\sf tanh}^2(a)$	Vanishing gradients
Rectified Linear Unit	$\int a \text{if } a > 0$		∫ 1	Dead neurons.
(ReLU)	$\int 0$ if $a \le 0$		1 0	Sparsity.
Looky Pol II	$\int a$ if $a > 0$		∫1	0 < k < 1
Leaky NeLO	ka if $a \leq 0$	- 1	k	0 < K < 1
Exponential Linear Unit	$\int a \text{if } a > 0$		$\int 1$	1.2.0
(ELU)	$\int k(e^a-1)$ if $a\leq 0$		$\int f(a) - k$	<i>K</i> > 0.

- Saturated sigmoidal neurons stop learning. Piecewise-linear units keep learning by avoiding saturation.
- ELU leads to better accuracy and faster training.
- Take home message: Use a member of the LU family. They avoid i) saturation and ii) the vanishing gradient problem.

2. Initialization of weights

- When all weights are initialized to the same value,
 - every neuron will output the same value,
 - all gradients will also be the same, and so
 - all neurons will learn the same thing.
- ► Standard method: initialize using w ~ N(0, 1). That is, every weight is initialized as a random value from the standard normal distribution.
- Ideally, for any neuron we would want the variance of output to be the same as the variance of inputs.
 - Why? So that the signal neither vanishes nor explodes after going through the neuron.
 - We would like this to be true for the forward as well as the backward pass.
- ► This can be approximately achieved via Xavier initialization.

Xavier Initialization

- Very useful for deep networks.
- Let n_i be the number of weights feeding into a neuron and n_o be the number of neurons that it feeds its output to.
- For weights of sigmoidal neurons, initialize¹ $w \sim \mathcal{N}(0, \frac{1}{n_i})$ or $w \sim \mathcal{N}(0, \frac{2}{n_i+n_o})$.
- Ensures variance of outputs is same as variance of inputs so that propagation through the network does not shrink or explode the signal.
- For weights of neurons from the LU family, initialize² $w \sim \mathcal{N}(0, \frac{2}{n_i}).$

¹Glorot and Bengio, 'Understanding the difficulty of training deep feedforward neural networks'.

²He et al., 'Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification'.

Deep Learning

Vanishing Gradient

So far ...

- Better activation functions let the gradients remain alive.
- Better weight initializations let the signals as well as the gradients remain alive. But for how long?
- So it seems as if the main goal is to let forward and backward information remain alive.
- Can this be achieved in some other way?

3. Better normalization of inputs

- We have already seen the importance of normalizing inputs to shallow ML architectures.
- When distribution of input changes (covariate shift), weights need to be adapted.

- For deep architectures, the normalization problem becomes much more serious.
 - Change in w^(I-1) causes a change in distribution of inputs to layer I and beyond.
 - This forces $\mathbf{w}^{(l)}$ to adapt to the new distribution.
 - This leads to longer training times.
- It would be convenient if the input distribution of each neuron in each layer could remain stable.

- Solution: Inputs to every neuron in every layer must be normalized in a differentiable manner.
 - Normalization is useless if gradient ignores it.
- Batch normalization³.
 - Avoids vanishing gradients for sigmoidal non-linearities.
 - Allows much higher learning rates and therefore dramatically speeds up training.
 - Reduces dependence on good weight initialization.
 - Regularizes the model and reduces the need for dropout.

³loffe and Szegedy, 'Batch normalization: Accelerating deep network training by reducing internal covariate shift'.

Nazar Khan

Normalization vs. Whitening

Figure: Normalization versus whitening. Taken from http://cs231n.github.io/neural-networks-2/

- It is well-known that whitened inputs lead to faster convergence⁴. However, whitening can be expensive (due to inverse of covariance matrix).
- ▶ Normalization over a mini-batch B is a cheaper alternative.

$$\hat{x} = \frac{x - \mu_{\mathcal{B}}}{\sigma_{\mathcal{B}}} \tag{1}$$

where $\mu_{\mathcal{B}}$ and $\sigma_{\mathcal{B}}$ are the mean and standard deviation of the neuron's activations over a batch \mathcal{B} .

⁴LeCun et al., 'Efficient backprop'.

- However, such normalization can cause x̂ to lie close to the linear parts of a sigmoidal function.
- So we allow for scaling and shifting of \hat{x} to obtain the identity transformation.

$$y = \gamma \hat{x} + \beta \tag{2}$$

where γ and β are trainable network parameters.

The whole process is differentiable and therefore suitable for gradient descent.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1m}\}$; Parameters to be learned: γ, β				
Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$				
$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$	// mini-batch mean			
$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$	// mini-batch variance			
$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$	// normalize			
$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$	// scale and shift			

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

Please note that slightly different normalization is performed at test time where there are no batches.

Nazar Khan

Helpful Resources

- http://cs231n.stanford.edu/slides/2017/cs231n_ 2017_lecture6.pdf
- http://cs231n.stanford.edu/slides/2017/cs231n_ 2017_lecture7.pdf
- https://www.youtube.com/watch?v=nUUqwaxLnWs