
CS-667 Advanced Machine Learning

Nazar Khan

PUCIT

Convolutional Neural Networks

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

A Neuron as a Detector

I A neuron can be viewed as a detector.
I When it fires, the input must have been similar to its weights.

(Why?)
I So neuron firing indicates detection of something similar to its

weights.

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Convolutional Neural Networks

I For recognition of hand-written digits, we have seen that
inputs are images and outputs are posteriors probabilities
p(Ck |x) for k = 1, . . . 10.

I The digits true identity is invariant under
I translation, scaling, (small) rotation, and
I small elastic deformations (multiple writings of the same digit

by the same person will have subtle differences).

I The output of the neural network should also be invariant to
such changes.

I A traditional fully connected neural network can, in principle,
learn these invariances using lots of examples.

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Convolutional Neural Networks

I However, it totally ignores the local correlation property of
images.

I Nearby pixels are more strongly correlated than pixels that are
far apart.

I Modern computer vision exploits local correlation by extracting
features from local patches and combines this information to
detect higher-order features.

I Example: Gradients −→ Edges −→ Lines −→
I Local features useful in one sub-region can be useful in other

sub-regions.
I Example: same object appearing at different locations.

I This weakness of standard neural nets is overcome by
Convolutional Neural Networks (CNNs) also known as
ConvNets.

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

NN vs. CNN

NN
I Global receptive fields due to

being fully connected.
I Separate weights for each

neuron.

CNN
I Local receptive fields due to

being sparsely connected.
I Shared weights among

different neurons.
I Subsampling of each layer’s

outputs.
I Receptive field of a neuron consists of previous layer neurons

that it is connected to (or looking at).
I A CNN consists of two kinds of layers

I Convolutional layer
I Subsampling layer

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Convolutional layer

I Consists of multiple arrays of neurons. Each such array is
called a slice or more accurately feature map.

I Each neuron in a feature map
I is connected to only few neurons in the previous layer, but
I uses the same weight values as all other neurons in that

feature map.
I So within a feature map, we have both

I local receptive fields, and
I shared weights.

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Convolutional layer

I Example: A feature map may have
I 100 neurons placed in a 10× 10 array, with
I each neuron getting input from a 5× 5 patch of neurons in the

previous layer (receptive field), and
I the same 26(= 5× 5+ 1) weights shared between these 100

neurons.

I Viewed as detectors, all 100 neurons detect the same
5× 5 pattern but at different locations of the previous
layer.

I Different feature maps will learn1 to detect different kinds of
patterns.

I For example, one feature map might learn to detect horizontal
edges while others might learn to detect vertical or diagonal
edges and so on.

1based on their learned weights
Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Convolutional layer

I To compute activations of the 100 neurons, a dot-product is
computed between the same shared weights and different 5× 5
patches of previous layer neurons.

I This is equivalent to sliding a window of weights over the
previous layer and computing the dot-product at each
location of the window.

I Therefore, activations of the feature map neurons are
computed via convolution of the previous layer with a kernel
comprising the shared weights. Hence the name of this layer.

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Invariance in convolutional layer

I If the previous layer is shifted, the activations of the feature
map will also be shifted the same way and otherwise remain
unchanged.

I This is why ConvNet outputs achieve some invariance to
translations and distortions of inputs.

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Subsampling layer

I Reduces the spatial dimensions of the previous layer by
downsampling. Also called pooling layer.

I Example: downsampling previous layer of n × n neurons by
factor 2 yields a pooled layer of n

2 ×
n
2 neurons.

I No adjustable weights. Just a fixed downsampling procedure.
I Reduces computations and weights in subsequent layers. Leads

to lesser overfitting. (Why?)

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Subsampling

I Options: From non-overlapping 2× 2 patches
I pick top-left (standard downsampling by factor 2)
I pick average (mean-pooling)
I pick maximum (max-pooling)
I pick randomly (stochastic-pooling)

I Fractional max-pooling: pick pooling region randomly.

Figure: Max-pooling with 2× 2 receptive fields, and stride of 2 neurons.
Source: http://cs231n.github.io/convolutional-networks/

Nazar Khan Advanced Machine Learning

http://cs231n.github.io/convolutional-networks/

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Subsampling

I The options in the last slide discard 75% of the data.
I They correspond to

I neurons with 2× 2 receptive fields, and
I stride of 2 neurons.

I This is the most commonly used configuration. Other options
exist but note that pooling with larger receptive fields discards
too much data.

I Note that since maximum does not change when input is
slightly translated, max-pooling leads to some translation
invariance.

I Subsampling layer can be skipped if convolution layers uses
stride>1 since it also produces a subsampled output.

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Subsampling

A pooling layer
I with F × F receptive field and stride S ,
I "looking at" a W1 × H1 × D1 input volume,
I produces a W2 × H2 × D2 output volume, where

I W2 = W1−F
S + 1

I H2 = H1−F
S + 1

I D2 = D1.

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Fully Connected Layer

I The last layer is chosen to be fully connected (F)
I with neurons equal to the desired output size, and
I activation functions based on the problem to be solved.

I The output of the second-last layer can therefore be viewed as
the transformation φ for which the optimal output layer
weights are to be learned.

I Similarly, outputs of earlier layers are intermediate
representations of the input.

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Intermediate Representations

Figure: Intermediate feature representations. Early layers form simple,
low-level representations of the input. They are used to incrementally
form more complex, high-level representations. Source:
http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf

Nazar Khan Advanced Machine Learning

http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Putting it all together

I A standard CNN architecture takes the form
I −→ {C − S} −→ {C − S} −→ · · · −→ F .

I A particular CNN can be of the form I28×28 −→
6C5×5 − 6S2×2,2 −→ 12C3×3 − 12S2×2,2 −→ · · · −→ F .
Corresponds to

I Input array of size 28× 28.
I 6 feature-maps/slices in the first convolution layer with each

feature-map’s neurons looking at 5× 5 patches in all 3 input
slices.

I 12 feature-maps/slices in the second convolution layer with
each feature-map’s neurons looking at 3× 3 patches in all 6
slices of previous subsampling layer.

I Both subsampling layers have neurons with non-overlapping,
2× 2 receptive fields.

I To work with colour images, input volume will be changed to
I28×28×3.

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Putting it all together

Figure: A CNN architecture for 2D input images of size 28× 28 followed
by a 6 slice CONV layer, 6 slice POOL layer, 12 slice CONV layer, 12
slice POOL layer and finally a fully connected output layer of K neurons.
The POOL layers are performing a downsampling by factor of 2. For nD
images, input layers will be 28× 28× n and first CONV layer’s receptive
fields will be F × F × n.

Take-home quiz 2
I How many neurons?
I How many weights (including biases)? Assume 3× 3
receptive field for CONV layer 1 and 3× 3× 6 for CONV
layer 2.

Nazar Khan Advanced Machine Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Putting it all together

I There are LOTS of variations.
I 1× 1 convolutions.
I Fully convolutional networks.
I Residual blocks
I Inception modules
I SqueezeNet

I We have covered only the architectural details of CNNs.
I Implementation details will be covered in the project and

tutorial(s).
I Handling borders in convolution.
I Backpropagation with shared weights.
I Mathematical derivation.
I Efficient software implementation.
I http://cs231n.github.io/neural-networks-3/

Nazar Khan Advanced Machine Learning

http://cs231n.github.io/neural-networks-3/

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Assignment 4
CNN Implementation

I Implement a Convolutional Neural Network for classification
and train it to recognise categories from the Fashion-MNIST
dataset.

I Use ReLU activations for hidden layers.
I Due Tuesday, April 1st, 2019 before 5:30 pm on \\printsrv.
I Report classification accuracy and confusion matrix on the

training and testing data.
I Do not submit the dataset.
I Submit your_roll_number_CNN.zip.
I Resources

I http://cs231n.github.io/convolutional-networks/ for
forward propagation.

Nazar Khan Advanced Machine Learning

http://cs231n.github.io/convolutional-networks/

Neurons as Detectors CNN Convolutional layer Subsampling FC Layer Intermediate Representations

Assignment 4
CNN Implementation

I http://ufldl.stanford.edu/tutorial/supervised/
ConvolutionalNeuralNetwork/ for backward propagation.

I http://cs231n.stanford.edu/slides/2018/cs231n_
2018_lecture05.pdf for general CNN details.

I Fashion-MNIST can be obtained from
https://github.com/zalandoresearch/fashion-mnist.
It also shows how to load the data into Matlab.

I Consult your seniors in the CVML lab.

Nazar Khan Advanced Machine Learning

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf
https://github.com/zalandoresearch/fashion-mnist

	Neurons as Detectors
	CNN
	Convolutional layer
	Subsampling
	FC Layer
	Intermediate Representations

