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Introduction Maximum Variance Formulation PCA in high-dimensions Applications

Principal Component Analysis

I Widely used technique for
I dimensionality reduction
I data compression (lossy)
I feature extraction
I data visualisation

I Can be defined in 2 ways
I Orthogonal projection of data onto lower dimensional linear

space (principal subspace) such that variance of projected data
is maximised.

I Linear projection that minimises average projection cost.

I Also called Karhunen-Loeve transform.
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Principal Component Analysis

Figure: The two views of PCA. In this example for 2D data (in red), we
want to find the direction vector u1 (in magenta) for which (1) the
projections (in green) have maximum variance, or (2) the projection costs
(lengths of blue lines) are minimum.
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Maximum Variance Formulation of PCA

I Consider a set of signals X = [x1, . . . , xN ] where each xi ∈ RD .

I We have to find a vector u ∈ RD such that the variance of the
projected data onto u is maximum.

I Projections of a data points xi onto u are obtained via
dot-products uTxi for i = 1, . . . ,N.

I Mean of projected data is computed as uT x̄ where
x̄ = 1

N

∑N
i=1 xi .

I Therefore, variance of projected data along direction u is
computed as

Var(u) =
1
N

N∑
i=1

(uTxi − uT x̄)2
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Maximum Variance Formulation of PCA

I Variance along u can be rewritten as the quadratic form

Var(u) =
1
N

N∑
i=1

(uTxi − uT x̄)2 =
1
N

N∑
i=1

(uTxi − uT x̄)(uTxi − uT x̄)T

=
1
N

N∑
i=1

(uTxi − uT x̄)(xTi u− x̄Tu) =
1
N

N∑
i=1

uT (xi − x̄)(xTi − x̄T )u

= uT
1
N

N∑
i=1

(xi − x̄)(xTi − x̄T )︸ ︷︷ ︸
SD×D

u = uTSu

I We want to find the direction vector u that maximises the
quadratic form uTSu where S is the data covariance matrix.

I Take-home Quiz 3: Prove that u∗ = argmaxu uTSu is the
eigenvector of S corresponding to the largest eigenvalue.
(Hint: This is a constrained optimisation problem.)
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Maximum Variance Formulation of PCA

I The eigenvector of S corresponding to the largest eigenvalue is
called the first principal component.

I Additional principal components can be defined incrementally
by choosing each new projection direction as the one with
maximum projected variance among all directions orthogonal
to those already considered.

I First M principal components correspond to the eigenvectors
u1, . . . ,uM of S corresponding to the M largest eigenvalues
λ1, . . . , λM . (Proof by induction in Exercise 12.1)

I Eigen-decomposition of D × D matrix has O(D3) complexity.
I For finding the first M eigenvectors only, there exist alternative

methods such as the power method with O(MD2) complexity.
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Choosing M

I Total variance of the data is given by the sum
V (D) =

∑D
i=1 λi .

I By using the first M principal components, we capture
variance amounting to V (M) =

∑M
i=1 λi .

I The remaining, uncaptured variance is called the distortion
measure and is given by J =

∑D
i=M+1 λi .

I M can be chosen as the smallest integer for which V (M)
V (D) > τ

where 0 < τ ≤ 1.
I For example, τ = 0.95 corresponds to retaining 95% of the

total variance after projection.
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Choosing M

I Even for τ = 1, it is often observed that M < D.
I This shows that the intrinsic dimensionality of D-dimensional

data is often less than D.
I Therefore, by working in this lower-dimensional space we do

not loose any variations in the data.
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Assignment 5
Principal Component Analysis

I Dimensionality reduction via PCA.
I Code up a generic implementation of PCA in function

[evecs,evals]=compute_pca(X) where X is a D × N data
matrix.

I Regenerate Figures 12.3, 12.4 and 12.5 in Bishop’s book.
I Submit your_roll_number_PCA.zip containing

I code,
I generated images, and
I report.txt/pdf explaining your results.

I Due Wednesday, April 25, 2018 before 5:30 pm on \\printsrv.
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PCA for high-dimensional data

I N points in RD define an N − 1 dimensional linear subspace.
I If N < D, the D × D covariance matrix S will have rank (=

number of non-zero eigenvalues) at most N − 1.
I The remaining D − (N − 1) eigenvalues of S will all be 0.
I So we should not compute more than N − 1 eigenvectors.
I Projecting onto M > N − 1 eigenvectors does not imply

dimensionality reduction.
I The N < D scenario occurs often. For example, in a dataset

of N = 100000 RGB images of size 640× 480,
D = 640 ∗ 480 ∗ 3 = 921600 >> N.

I The O(D3) scaling also makes computing the eigenvectors of
S impractical for large D.
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PCA for high-dimensional data

I So we use a clever trick.
I Let X̃ be the data centered design matrix.

X̃ =


(x1 − x̄)T

(x2 − x̄)T

...
(xN − x̄)T


I We can write the data covariance matrix as

S =
1
N

N∑
i=1

(xi − x̄)(xTi − x̄T ) =
1
N
X̃T X̃
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PCA for high-dimensional data

I The eigenvector equation can be written as

Sui = λiui =⇒ 1
N
X̃T X̃ui = λiui

=⇒ 1
N
X̃X̃T X̃ui = λi X̃ui

=⇒ 1
N
X̃X̃Tvi = λivi (1)

which shows that λi and vi are eigenvalues and eigenvectors of
the smaller N × N matrix X̃X̃T .

I But notice that λi was also the eigenvalue of the original
covariance matrix S . So we have found the eigenvalues of S in
O(N3).
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PCA for high-dimensional data

I To obtain the eigenvectors ui , pre-multiply both sides of
Equation (1) by X̃T to obtain(

1
N
X̃T X̃

)(
X̃Tvi

)
= λi

(
X̃Tvi

)
which shows that X̃Tvi is an eigenvector of S with eigenvalue
λi .

I So the original eigenvectors are obtained as

ui =
X̃Tvi
||X̃Tvi ||

=
X̃Tvi√
Nλi

Show that ||X̃Tvi || =
√
Nλi .

I So the eigen-decomposition of the D × D covariance matrix S
can be achieved in O(N3).
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PCA for high-dimensional data
Summary

I When N < D, construct the N × N matrix X̃X̃T and compute
its eigenvalues λi and eigenvectors vi .

I Eigenvalues of S are also λi .
I Eigenvectors of S are obtained as

ui =
X̃Tvi√
Nλi
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Applications

I We now look at some applications of PCA.
I These include

I Compression
I Pre-processing of data
I Visualization of data
I Classification
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Compression

I When data point x is projected onto the i-th principal
component, coefficient of projection is given by

αi = (x− x̄)Tui

I Consider projections α1, . . . , αM onto the first M principal
components where M < D.

I Reconstruction x̂ from these M scalar coefficients can be
obtained as

x̂ = x̄ +
M∑
i=1

αiui
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Compression

I This dimensionality reduction represents compression from RD

to RM .
I In RD , N data points require storing ND values.
I After compression using the first M principal components, the

N data points require storing NM + MD + D values. (Why
+D?)

I You will implement compression via PCA in the Assignment
when you regenerate Bishop’s Figure 12.5.
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Data pre-processing

I Sometimes different dimensions of data have different units or
significantly different variability.

I x = [time (seconds), speed (mph), fuel consumption (liters)]T .
I x = [time between earthquakes, duration of earthquake]T .

I Averaged over the whole dataset, every component of x will
have a different mean and different variance.

I Effectiveness of subsequent algorithms can be diminished due
to such variability.

I Non-PCA solution: Standardize the data using yni = xni−x̄i
σi

.
Also called normalization.

I Individual components of the transformed data y1, . . . , yN will
now have zero-mean and unit-variance.

I However different components yni and ynj can still be
correlated.
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Normalization vs. Whitening

Figure: Normalization versus whitening. Taken from
http://cs231n.github.io/neural-networks-2/
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Data pre-processing
Whitening

I A better PCA-based solution, known as whitening or sphereing
transforms the data as

yn = L−
1
2UT (xn − x̄)

where L is a D × D diagonal matrix of D eigenvalues λi of S
and U is an orthogonal D × D matrix with columns given by
the corresponding eigenvectors ui .

I Easy to show that transformed data y1, . . . , yN has zero-mean
and its covariance matrix 1

N

∑N
n=1 yny

T
n equals ID×D . Show

it.
I So, individual components of the transformed data y1, . . . , yN

will now have zero-mean and unit-covariance.
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Visualization

I Project data onto the first 1, 2, or 3 principal components and
visualise these projected coefficients.
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Classification via PCA

I Training
1. Compute eigen-decomposition of the complete training data

x1, . . . , xN .
2. Form orthogonal eigen-basis from the first M principal

components.
3. Project each mean-subtracted training sample xn − x̄ onto the

eigen-bases to obtain projected coefficients φn ∈ RM .
I Testing

1. Project mean-subtracted test sample x− x̄ onto the
eigen-bases to obtain projected coefficients φ ∈ RM .

2. Compute Euclidean distance of coefficients φ from each of the
coefficients φn of the training samples.

3. Class of x is the class of the nearest neighbour nn from the
training samples where

nn = argmin
n
||φ− φn||2

I This is essentially nearest neighbour classification in RM

instead of RD .
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Assignment 6
Classification via Principal Component Analysis

I Classification via PCA.
I Compute eigen-basis of a suitable size M for the 10 classes

from the MNIST digits training set using the function
[evecs,evals]=compute_pca(X) from Assignment 5.

I Classify digits in the testing set and compute testing accuracy.
I Submit your_roll_number_PCA_Classify.zip containing

I code,
I report.txt/pdf explaining your results.

I Please do not include the MNIST dataset in your .zip
file.

I Due Wednesday, May 2, 2018 before 5:30 pm on \\printsrv.
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