CS-667 Advanced Machine Learning

Nazar Khan
PUCIT
Principal Component Analysis

Principal Component Analysis

- Widely used technique for
- dimensionality reduction
- data compression (lossy)
- feature extraction
- data visualisation
- Can be defined in 2 ways
- Orthogonal projection of data onto lower dimensional linear space (principal subspace) such that variance of projected data is maximised.
- Linear projection that minimises average projection cost.
- Also called Karhunen-Loeve transform.

Principal Component Analysis

Figure: The two views of PCA. In this example for 2D data (in red), we want to find the direction vector \mathbf{u}_{1} (in magenta) for which (1) the projections (in green) have maximum variance, or (2) the projection costs (lengths of blue lines) are minimum.

Maximum Variance Formulation of PCA

- Consider a set of signals $X=\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right]$ where each $\mathrm{x}_{i} \in \mathbb{R}^{D}$.
- We have to find a vector $\mathbf{u} \in \mathbb{R}^{D}$ such that the variance of the projected data onto \mathbf{u} is maximum.
- Projections of a data points x_{i} onto \mathbf{u} are obtained via dot-products $\mathbf{u}^{T} \mathbf{x}_{i}$ for $i=1, \ldots, N$.
- Mean of projected data is computed as $\mathbf{u}^{T} \overline{\mathrm{x}}$ where $\overline{\mathrm{x}}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{x}_{i}$.
- Therefore, variance of projected data along direction \mathbf{u} is computed as

$$
\operatorname{Var}(\mathbf{u})=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{u}^{T} \mathbf{x}_{i}-\mathbf{u}^{T} \overline{\mathbf{x}}\right)^{2}
$$

Maximum Variance Formulation of PCA

- Variance along u can be rewritten as the quadratic form

$$
\begin{aligned}
\operatorname{Var}(\mathbf{u}) & =\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{u}^{T} \mathbf{x}_{i}-\mathbf{u}^{T} \overline{\mathbf{x}}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{u}^{T} \mathbf{x}_{i}-\mathbf{u}^{T} \overline{\mathbf{x}}\right)\left(\mathbf{u}^{T} \mathbf{x}_{i}-\mathbf{u}^{T} \overline{\mathbf{x}}\right)^{T} \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{u}^{T} \mathbf{x}_{i}-\mathbf{u}^{T} \overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}^{T} \mathbf{u}-\overline{\mathbf{x}}^{T} \mathbf{u}\right)=\frac{1}{N} \sum_{i=1}^{N} \mathbf{u}^{T}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}^{T}-\overline{\mathbf{x}}^{T}\right) \mathbf{u} \\
& =\mathbf{u}^{T} \underbrace{\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}^{T}-\overline{\mathbf{x}}^{T}\right) \mathbf{u}=\mathbf{u}^{T} S \mathbf{u}}_{S_{D \times D}}
\end{aligned}
$$

- We want to find the direction vector \mathbf{u} that maximises the quadratic form $\mathbf{u}^{T} S \mathbf{u}$ where S is the data covariance matrix.
- Take-home Quiz 3: Prove that $\mathbf{u}^{*}=\arg \max _{\mathbf{u}} \mathbf{u}^{T} S \mathbf{u}$ is the eigenvector of S corresponding to the largest eigenvalue. (Hint: This is a constrained optimisation problem.)

Maximum Variance Formulation of PCA

- The eigenvector of S corresponding to the largest eigenvalue is called the first principal component.
- Additional principal components can be defined incrementally by choosing each new projection direction as the one with maximum projected variance among all directions orthogonal to those already considered.
- First M principal components correspond to the eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{M}$ of S corresponding to the M largest eigenvalues $\lambda_{1}, \ldots, \lambda_{M}$. (Proof by induction in Exercise 12.1)
- Eigen-decomposition of $D \times D$ matrix has $O\left(D^{3}\right)$ complexity.
- For finding the first M eigenvectors only, there exist alternative methods such as the power method with $O\left(M D^{2}\right)$ complexity.

Choosing M

- Total variance of the data is given by the sum $V(D)=\sum_{i=1}^{D} \lambda_{i}$.
- By using the first M principal components, we capture variance amounting to $V(M)=\sum_{i=1}^{M} \lambda_{i}$.
- The remaining, uncaptured variance is called the distortion measure and is given by $J=\sum_{i=M+1}^{D} \lambda_{i}$.
- M can be chosen as the smallest integer for which $\frac{V(M)}{V(D)}>\tau$ where $0<\tau \leq 1$.
- For example, $\tau=0.95$ corresponds to retaining 95% of the total variance after projection.

Choosing M

- Even for $\tau=1$, it is often observed that $M<D$.
- This shows that the intrinsic dimensionality of D-dimensional data is often less than D.
- Therefore, by working in this lower-dimensional space we do not loose any variations in the data.

Assignment 5

- Dimensionality reduction via PCA.
- Code up a generic implementation of PCA in function [evecs, evals]=compute_pca(X) where X is a $D \times N$ data matrix.
- Regenerate Figures 12.3, 12.4 and 12.5 in Bishop's book.
- Submit your_roll_number_PCA.zip containing
- code,
- generated images, and
- report.txt/pdf explaining your results.
- Due Wednesday, April 25, 2018 before 5:30 pm on
printsrv.

PCA for high-dimensional data

- N points in \mathbb{R}^{D} define an $N-1$ dimensional linear subspace.
- If $N<D$, the $D \times D$ covariance matrix S will have rank ($=$ number of non-zero eigenvalues) at most $N-1$.
- The remaining $D-(N-1)$ eigenvalues of S will all be 0 .
- So we should not compute more than $N-1$ eigenvectors.
- Projecting onto $M>N-1$ eigenvectors does not imply dimensionality reduction.
- The $N<D$ scenario occurs often. For example, in a dataset of $N=100000$ RGB images of size 640×480, $D=640 * 480 * 3=921600 \gg N$.
- The $O\left(D^{3}\right)$ scaling also makes computing the eigenvectors of S impractical for large D.

PCA for high-dimensional data

- So we use a clever trick.
- Let $\tilde{\mathbf{X}}$ be the data centered design matrix.

$$
\tilde{\mathbf{x}}=\left[\begin{array}{c}
\left(\mathrm{x}_{1}-\overline{\mathrm{x}}\right)^{T} \\
\left(\mathrm{x}_{2}-\overline{\mathrm{x}}\right)^{T} \\
\vdots \\
\left(\mathrm{x}_{N}-\overline{\mathrm{x}}\right)^{T}
\end{array}\right]
$$

- We can write the data covariance matrix as

$$
S=\frac{1}{N} \sum_{i=1}^{N}\left(\mathrm{x}_{i}-\overline{\mathrm{x}}\right)\left(\mathrm{x}_{i}^{T}-\overline{\mathrm{x}}^{T}\right)=\frac{1}{N} \tilde{\mathrm{x}}^{T} \tilde{\mathrm{x}}
$$

PCA for high-dimensional data

- The eigenvector equation can be written as

$$
\begin{align*}
S \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} & \Longrightarrow \frac{1}{N} \tilde{\mathbf{x}}^{T} \tilde{\mathbf{X}} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \\
& \Longrightarrow \frac{1}{N} \tilde{\mathbf{X}} \tilde{\mathbf{X}}^{T} \tilde{\mathbf{X}} \mathbf{u}_{i}=\lambda_{i} \tilde{\mathbf{X}} \mathbf{u}_{i} \\
& \Longrightarrow \frac{1}{N} \tilde{\mathbf{X}} \tilde{\mathbf{X}}^{T} \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i} \tag{1}
\end{align*}
$$

which shows that λ_{i} and \mathbf{v}_{i} are eigenvalues and eigenvectors of the smaller $N \times N$ matrix $\tilde{\mathbf{X}} \tilde{\mathbf{X}}^{T}$.

- But notice that λ_{i} was also the eigenvalue of the original covariance matrix S. So we have found the eigenvalues of S in $O\left(N^{3}\right)$.

PCA for high-dimensional data

- To obtain the eigenvectors \mathbf{u}_{i}, pre-multiply both sides of Equation (1) by $\tilde{\mathbf{X}}^{T}$ to obtain

$$
\left(\frac{1}{N} \tilde{\mathbf{X}}^{T} \tilde{\mathbf{X}}\right)\left(\tilde{\mathbf{X}}^{T} \mathbf{v}_{i}\right)=\lambda_{i}\left(\tilde{\mathbf{X}}^{T} \mathbf{v}_{i}\right)
$$

which shows that $\tilde{\mathbf{X}}^{\top} \mathbf{v}_{i}$ is an eigenvector of S with eigenvalue λ_{i}.

- So the original eigenvectors are obtained as

$$
\mathbf{u}_{i}=\frac{\tilde{\mathbf{X}}^{T} \mathbf{v}_{i}}{\left\|\tilde{\mathbf{X}}^{T} \mathbf{v}_{i}\right\|}=\frac{\tilde{\mathbf{X}}^{T} \mathbf{v}_{i}}{\sqrt{N \lambda_{i}}}
$$

Show that $\left\|\tilde{\mathbf{X}}^{T} \mathbf{v}_{i}\right\|=\sqrt{N \lambda_{i}}$.

- So the eigen-decomposition of the $D \times D$ covariance matrix S can be achieved in $O\left(N^{3}\right)$.

PCA for high-dimensional data

Summary

- When $N<D$, construct the $N \times N$ matrix $\tilde{\mathbf{X}} \tilde{\mathbf{X}}^{T}$ and compute its eigenvalues λ_{i} and eigenvectors \mathbf{v}_{i}.
- Eigenvalues of S are also λ_{i}.
- Eigenvectors of S are obtained as

$$
\mathbf{u}_{i}=\frac{\tilde{\mathbf{x}}^{T} \mathbf{v}_{i}}{\sqrt{N \lambda_{i}}}
$$

Applications

- We now look at some applications of PCA.
- These include
- Compression
- Pre-processing of data
- Visualization of data
- Classification

Compression

- When data point x is projected onto the i-th principal component, coefficient of projection is given by

$$
\alpha_{i}=(\mathbf{x}-\overline{\mathrm{x}})^{T} \mathbf{u}_{i}
$$

- Consider projections $\alpha_{1}, \ldots, \alpha_{M}$ onto the first M principal components where $M<D$.
- Reconstruction $\hat{\mathrm{x}}$ from these M scalar coefficients can be obtained as

$$
\hat{\mathrm{x}}=\overline{\mathrm{x}}+\sum_{i=1}^{M} \alpha_{i} \mathbf{u}_{i}
$$

Compression

- This dimensionality reduction represents compression from \mathbb{R}^{D} to \mathbb{R}^{M}.
- In \mathbb{R}^{D}, N data points require storing $N D$ values.
- After compression using the first M principal components, the N data points require storing $N M+M D+D$ values. (Why $+D$?)
- You will implement compression via PCA in the Assignment when you regenerate Bishop's Figure 12.5.

Data pre-processing

- Sometimes different dimensions of data have different units or significantly different variability.
- $\mathbf{x}=[\text { time (seconds), speed (mph), fuel consumption (liters) }]^{T}$.
- $\mathbf{x}=[\text { time between earthquakes, duration of earthquake }]^{T}$.
- Averaged over the whole dataset, every component of x will have a different mean and different variance.
- Effectiveness of subsequent algorithms can be diminished due to such variability.
- Non-PCA solution: Standardize the data using $y_{n i}=\frac{x_{n i}-\bar{x}_{i}}{\sigma_{i}}$. Also called normalization.
- Individual components of the transformed data $\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}$ will now have zero-mean and unit-variance.
- However different components $y_{n i}$ and $y_{n j}$ can still be correlated.

Normalization vs. Whitening

Figure: Normalization versus whitening. Taken from http://cs231n.github.io/neural-networks-2/

Data pre-processing

Whitening

- A better PCA-based solution, known as whitening or sphereing transforms the data as

$$
\mathbf{y}_{n}=\mathbf{L}^{-\frac{1}{2}} \mathbf{U}^{T}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)
$$

where \mathbf{L} is a $D \times D$ diagonal matrix of D eigenvalues λ_{i} of S and U is an orthogonal $D \times D$ matrix with columns given by the corresponding eigenvectors \mathbf{u}_{i}.

- Easy to show that transformed data $\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}$ has zero-mean and its covariance matrix $\frac{1}{N} \sum_{n=1}^{N} \mathbf{y}_{n} \mathbf{y}_{n}^{T}$ equals $\mathbf{I}_{D \times D}$. Show it.
- So, individual components of the transformed data $\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}$ will now have zero-mean and unit-covariance.

Visualization

- Project data onto the first 1,2 , or 3 principal components and visualise these projected coefficients.

Classification via PCA

- Training

1. Compute eigen-decomposition of the complete training data $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}$.
2. Form orthogonal eigen-basis from the first M principal components.
3. Project each mean-subtracted training sample $\mathbf{x}_{n}-\overline{\mathbf{x}}$ onto the eigen-bases to obtain projected coefficients $\phi_{n} \in \mathbb{R}^{M}$.

- Testing

1. Project mean-subtracted test sample $\mathbf{x}-\overline{\mathbf{x}}$ onto the eigen-bases to obtain projected coefficients $\phi \in \mathbb{R}^{M}$.
2. Compute Euclidean distance of coefficients ϕ from each of the coefficients ϕ_{n} of the training samples.
3. Class of \mathbf{x} is the class of the nearest neighbour $n n$ from the training samples where

$$
n n=\arg \min _{n}\left\|\phi-\phi_{n}\right\|^{2}
$$

- This is essentially nearest neighbour classification in \mathbb{R}^{M} instead of \mathbb{R}^{D}.

Assignment 6

Classification via Principal Component Analysis

- Classification via PCA.
- Compute eigen-basis of a suitable size M for the 10 classes from the MNIST digits training set using the function [evecs, evals]=compute_pca(X) from Assignment 5.
- Classify digits in the testing set and compute testing accuracy.
- Submit your_roll_number_PCA_Classify.zip containing
- code,
- report.txt/pdf explaining your results.
- Please do not include the MNIST dataset in your .zip file.
- Due Wednesday, May 2, 2018 before 5:30 pm on
printsrv.

