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Python

I A high-level, open-source, interpreted programming language.
I Highly extendable.
I Very powerful, very readable – almost like pseudocode.
I A must-know language for machine learning.

def qsort(arr):
if len(arr) <= 1:

return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return qsort(left) + middle + qsort(right)

print(qsort([3,6,8,10,1,2,1]))
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Python Basics

I Basic data types
I Integers and floats
I Booleans
I Strings

I Containers
I Lists (slicing, loops, comprehensions)
I Sets
I Tuples
I Dictionaries

I Functions
I Classes

These topics are covered in detail in notebooks 00 till 07 at
https://gitlab.erc.monash.edu.au/andrease/Python4Maths
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Numeric Computing

Numpy package for scientific computing. Install via conda
install numpy.

I Arrays
I Data types
I Array math
I Broadcasting

Matplotlib package for MATLAB-like plots. Install via conda
install matplotlib.

I Plotting, Subplots, Images
These topics are covered in detail in the tutorial at
http://cs231n.github.io/python-numpy-tutorial/. The
corresponding notebook python_numpy.ipynb can be found in the
course folder on \\printsrv.
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Automatic Differentiation (AD)

I Set of techniques to numerically evaluate the derivative of a
function specified by a computer program.

I Analytic or symbolic differentiation evaluates the derivative of
a function specified by a math expression.

I Also called algorithmic differentiation or computational
differentiation.

I Backpropagation is a special case of AD.

Modern machine learning frameworks (TensorFlow, Theano,
PyTorch) employ AD. The programmer only needs to imple-
ment the loss function. Derivatives are handled automatically.
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Types of AD

I AD is just unrolling of the chain rule.
I Can be unrolled in two ways,
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I The idea is to accumulate required derivatives.
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Forward Accumulation AD

I Consider the function

z = f (x1, x2) = x1x2 + sin x1

= w1w2 + sinw1

= w3 + w4 = w5

I Consider derivatives with respect to x1. Let ẇi = ∂wi
∂x .

I For computing ∂z
∂x1

, we first compute the seed values

ẇ1 =
∂x1

∂x1
= 1

ẇ2 =
∂x2

∂x1
= 0

I These seed values can be propagated using the chain rule.
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Forward Accumulation AD

Operations to compute value Operations to compute derivative
w1 = x1 ẇ1 = 1 (seed)
w2 = x2 ẇ2 = 0 (seed)
w3 = w1 · w2 ẇ3 = w2 · ẇ1 + w1 · ẇ2
w4 = sinw1 ẇ4 = cosw1 · ẇ1
w5 = w3 + w4 ẇ5 = ẇ3 + ẇ4
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Forward Accumulation AD

I For computing ∂z
∂x2

, propagate again with seed values ẇ1 = 0
and ẇ2 = 1.

I Number of forward sweeps is equal to number of inputs.
I So forward AD is efficient when output size is much larger

than input size.
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Reverse Accumulation AD

I Fix the dependent variable and compute the derivative w.r.t
each sub-expression recursively.
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I Define the adjoint w̄i = ∂y
∂wi

as the derivative w.r.t
sub-expression wi .

I Notice the similarity with δj = ∂E
∂aj

in back-propagation.
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Reverse Accumulation AD

Operations to compute value Operations to compute derivative
z5 = w5 w̄5 = 1 (seed)
w5 = w3 + w4 w̄4 = w̄5
w5 = w3 + w4 w̄3 = w̄5
w3 = w1 · w2 w̄2 = w̄3 · w1
w4 = sinw1 and w3 = w1 · w2 w̄1 = w̄3 · w2 + w̄4 · cosw1
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Reverse Accumulation AD

I Number of reverse sweeps is equal to number of outputs.
I So reverse AD is efficient when input size is much larger than

output size.
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AD in Python

I A Python package called Autograd implements reverse mode
automatic differentiation.

I Elementary operations such as +, sin, xk etc. are overloaded
by also computing their derivates 1, cos, kx etc..

I If required, user-defined complex functions and their derivative
implementations can be registered with Autograd.
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Logistic Regression via Automatic Differentiation

import pylab
import sklearn.datasets
import autograd.numpy as np
from autograd import grad

# Generate the data
train_X, train_y = sklearn.datasets.make_moons(500, noise=0.1)

# Define the activation, prediction and loss functions for Logistic Regression
def activation(x):

return 0.5*(np.tanh(x) + 1)

def predict(weights, inputs):
return activation(np.dot(inputs, weights))

def loss(weights):
preds = predict(weights, train_X)
label_probabilities = np.log(preds) * train_y + np.log(1 - preds) * (1 - train_y)
return -np.sum(label_probabilities)

# Compute the gradient of the loss function
gradient_loss = grad(loss)

# Set the initial weights
weights = np.array([1.0, 1.0])

# Steepest Descent
loss_values = []
learning_rate = 0.001
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Logistic Regression via Automatic Differentiation

for i in range(100):
loss_values.append(loss(weights))
step = gradient_loss(weights)
weights -= step * learning_rate

# Plot the decision boundary
x_min, x_max = train_X[:, 0].min() - 0.5, train_X[:, 0].max() + 0.5
y_min, y_max = train_X[:, 1].min() - 0.5, train_X[:, 1].max() + 0.5
x_mesh, y_mesh = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))
Z = predict(weights, np.c_[x_mesh.ravel(), y_mesh.ravel()])
Z = Z.reshape(x_mesh.shape)
cs = pylab.contourf(x_mesh, y_mesh, Z, cmap=pylab.cm.Spectral)
pylab.scatter(train_X[:, 0], train_X[:, 1], c=train_y, cmap=pylab.cm.Spectral)
pylab.colorbar(cs)

# Plot the loss over each step
pylab.figure()
pylab.plot(loss_values)
pylab.xlabel("Steps")
pylab.ylabel("Loss")
pylab.show()
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TensorFlow

I Open source library for numerical computation using data flow
graphs.

I Graph nodes represent mathematical operations and edges
represent multidimensional data arrays (tensors) that flow
between them.

I Deploy computation to one or more CPUs or GPUs in a
desktop, server, or mobile device without rewriting code.

I Install via conda install tensorflow
I Datasets easily accessible through TF https://github.com/

tensorflow/datasets/blob/master/docs/datasets.md
I Extremely easy high-level API of TensorFlow called Keras1.
I Useful to understand the low-level APIs2 as well.

1https://www.tensorflow.org/guide/keras
2https://www.tensorflow.org/guide/low_level_intro
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Keras

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)

])
model.compile(optimizer=’adam’,

loss=’sparse_categorical_crossentropy’,
metrics=[’accuracy’])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
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Computation Graph, Session, Run

import numpy as np
import tensorflow as tf

a = tf.placeholder(tf.float32, name=’a’) #placeholder contains fixed value set before running the graph
b = tf.placeholder(tf.float32, name=’b’)
c = tf.Variable(initial_value=[[5.0,5.0],[5.0,5.0]], name=’c’) #variable can change its value
d = tf.Variable(initial_value=[[3.0,3.0],[3.0,3.0]], name=’d’)
p = tf.placeholder(tf.float32, name=’p’)
q = tf.placeholder(tf.float32, name=’q’)
r = tf.Variable(initial_value=3.0, name=’r’)
s = tf.Variable(initial_value=4.0, name=’s’)
u = tf.constant(5.0, name=’u’) #constant value is same for all runs of the graph

e = (((a * p) + (b - q) - (c + r )) * d/s) * u #the computation graph

#setup a session
sess = tf.Session()
writer = tf.summary.FileWriter("./temp") #for TensorBoard
writer.add_graph(sess.graph)

#run the session
sess.run(tf.global_variables_initializer())
result = sess.run(e,feed_dict={p:1.0, q:2.0, a:[[1,1],[1,1]],b:[[2,2],[2,2]]}) #feed the placeholders
print("Result: ", result)
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Computation Graph, Session, Run
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TensorBoard

I Collection of web applications for inspecting and
understanding runs and graphs in TF.

I Useful for understanding extremely complex computations such
as deep networks and debugging and optimizing them.

I Currently supports five visualizations:
1. scalars
2. images
3. audio
4. histograms
5. graphs

I Run your code via python tf_comp_graph.py
I Start TensorBoard service via tensorboard –logdir temp.
I Open localhost:6006 in your browser.
I Note that temp/ should only contain 1 summary.
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Machine Learning in TensorFlow

I Linear regression
I Logistic regression
I Neural Network
I CNN
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Two-Layer Neural Network in TensorFlow

import numpy as np
import tensorflow as tf

# Generate Random Data
examples = 1000
features = 100
x_data = np.random.randn(examples, features)
y_data = np.random.randn(examples,1)

# Define the Neural Network Model
hidden_layer_nodes = 10
X = tf.placeholder(tf.float32, shape=[None, features], name = "X")
y = tf.placeholder(tf.float32, shape=[None, 1], name = "y")
w1 = tf.Variable(tf.random_normal(shape=[features,hidden_layer_nodes]), name="w1")
b1 = tf.Variable(tf.random_normal(shape=[hidden_layer_nodes]), name="b1")
w2 = tf.Variable(tf.random_normal(shape=[hidden_layer_nodes,1]), name="w2")
b2 = tf.Variable(tf.random_normal(shape=[1,1]), name="b2")
hidden_output = tf.nn.relu(tf.add(tf.matmul(X, w1), b1), name="hidden_output")
y_hat = tf.nn.relu(tf.add(tf.matmul(hidden_output, w2), b2), name="y_hat")
loss = tf.reduce_mean(tf.square(y_hat - y), name="loss")

# Set up the gradient descent
learning_rate = 0.05
optimiser = tf.train.GradientDescentOptimizer(learning_rate)
train_step = optimiser.minimize(loss)

sess = tf.Session()
writer = tf.summary.FileWriter("./temp")
writer.add_graph(sess.graph)
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Two-Layer Neural Network in TensorFlow

sess.run(tf.global_variables_initializer())

epochs = 5000
batch_size = 5

# Before Training
curr_loss = sess.run(loss, feed_dict={X:x_data, y:y_data})
print("Loss before training:", curr_loss)

for i in range(epochs):
rand_index = np.random.choice(examples, size=batch_size)
sess.run(train_step, feed_dict={X:x_data[rand_index], y:y_data[rand_index]})

# After Training
curr_loss = sess.run(loss, feed_dict={X:x_data, y:y_data})
print("Loss before training:", curr_loss)

# Loss before training: 42.431
# Loss before training: 0.976375
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