
CS-667 Advanced Machine Learning

Nazar Khan

PUCIT

Python, Automatic Differentiation and TensorFlow

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Python

I A high-level, open-source, interpreted programming language.
I Highly extendable.
I Very powerful, very readable – almost like pseudocode.
I A must-know language for machine learning.

def qsort(arr):
if len(arr) <= 1:

return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return qsort(left) + middle + qsort(right)

print(qsort([3,6,8,10,1,2,1]))

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Python Basics

I Basic data types
I Integers and floats
I Booleans
I Strings

I Containers
I Lists (slicing, loops, comprehensions)
I Sets
I Tuples
I Dictionaries

I Functions
I Classes

These topics are covered in detail in notebooks 00 till 07 at
https://gitlab.erc.monash.edu.au/andrease/Python4Maths

Nazar Khan Advanced Machine Learning

https://gitlab.erc.monash.edu.au/andrease/Python4Maths

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Numeric Computing

Numpy package for scientific computing. Install via conda
install numpy.

I Arrays
I Data types
I Array math
I Broadcasting

Matplotlib package for MATLAB-like plots. Install via conda
install matplotlib.

I Plotting, Subplots, Images
These topics are covered in detail in the tutorial at
http://cs231n.github.io/python-numpy-tutorial/. The
corresponding notebook python_numpy.ipynb can be found in the
course folder on \\printsrv.

Nazar Khan Advanced Machine Learning

http://cs231n.github.io/python-numpy-tutorial/

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Automatic Differentiation (AD)

I Set of techniques to numerically evaluate the derivative of a
function specified by a computer program.

I Analytic or symbolic differentiation evaluates the derivative of
a function specified by a math expression.

I Also called algorithmic differentiation or computational
differentiation.

I Backpropagation is a special case of AD.

Modern machine learning frameworks (TensorFlow, Theano,
PyTorch) employ AD. The programmer only needs to imple-
ment the loss function. Derivatives are handled automatically.

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Types of AD

I AD is just unrolling of the chain rule.
I Can be unrolled in two ways,

1. Forward:

∂y

∂x
=

∂y

∂wn−1

∂wn−1

∂x
=

∂y

∂wn−1

(
∂wn−1

∂wn−2

∂wn−2

∂x

)
=

∂y

∂wn−1

(
∂wn−1

∂wn−2

(
∂wn−2

∂wn−3

∂wn−3

∂x

))
= · · ·

2. Reverse:

∂y

∂x
=

∂y

∂w1

∂w1

∂x
=

(
∂y

∂w2

∂w2

∂w1

)
∂w1

∂x

=

((
∂y

∂w3

∂w3

∂w2

)
∂w2

∂w1

)
∂w1

∂x
= · · ·

I The idea is to accumulate required derivatives.

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Forward Accumulation AD

I Consider the function

z = f (x1, x2) = x1x2 + sin x1

= w1w2 + sinw1

= w3 + w4 = w5

I Consider derivatives with respect to x1. Let ẇi = ∂wi
∂x .

I For computing ∂z
∂x1

, we first compute the seed values

ẇ1 =
∂x1

∂x1
= 1

ẇ2 =
∂x2

∂x1
= 0

I These seed values can be propagated using the chain rule.

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Forward Accumulation AD

Operations to compute value Operations to compute derivative
w1 = x1 ẇ1 = 1 (seed)
w2 = x2 ẇ2 = 0 (seed)
w3 = w1 · w2 ẇ3 = w2 · ẇ1 + w1 · ẇ2
w4 = sinw1 ẇ4 = cosw1 · ẇ1
w5 = w3 + w4 ẇ5 = ẇ3 + ẇ4

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Forward Accumulation AD

I For computing ∂z
∂x2

, propagate again with seed values ẇ1 = 0
and ẇ2 = 1.

I Number of forward sweeps is equal to number of inputs.
I So forward AD is efficient when output size is much larger

than input size.

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Reverse Accumulation AD

I Fix the dependent variable and compute the derivative w.r.t
each sub-expression recursively.
∂y
∂x = ∂y

∂w1
∂w1
∂x =

(
∂y
∂w2

∂w2
∂w1

)
∂w1
∂x =

((
∂y
∂w3

∂w3
∂w2

)
∂w2
∂w1

)
∂w1
∂x = · · ·

I Define the adjoint w̄i = ∂y
∂wi

as the derivative w.r.t
sub-expression wi .

I Notice the similarity with δj = ∂E
∂aj

in back-propagation.

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Reverse Accumulation AD

Operations to compute value Operations to compute derivative
z5 = w5 w̄5 = 1 (seed)
w5 = w3 + w4 w̄4 = w̄5
w5 = w3 + w4 w̄3 = w̄5
w3 = w1 · w2 w̄2 = w̄3 · w1
w4 = sinw1 and w3 = w1 · w2 w̄1 = w̄3 · w2 + w̄4 · cosw1

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Reverse Accumulation AD

I Number of reverse sweeps is equal to number of outputs.
I So reverse AD is efficient when input size is much larger than

output size.

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

AD in Python

I A Python package called Autograd implements reverse mode
automatic differentiation.

I Elementary operations such as +, sin, xk etc. are overloaded
by also computing their derivates 1, cos, kx etc..

I If required, user-defined complex functions and their derivative
implementations can be registered with Autograd.

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Logistic Regression via Automatic Differentiation

import pylab
import sklearn.datasets
import autograd.numpy as np
from autograd import grad

Generate the data
train_X, train_y = sklearn.datasets.make_moons(500, noise=0.1)

Define the activation, prediction and loss functions for Logistic Regression
def activation(x):

return 0.5*(np.tanh(x) + 1)

def predict(weights, inputs):
return activation(np.dot(inputs, weights))

def loss(weights):
preds = predict(weights, train_X)
label_probabilities = np.log(preds) * train_y + np.log(1 - preds) * (1 - train_y)
return -np.sum(label_probabilities)

Compute the gradient of the loss function
gradient_loss = grad(loss)

Set the initial weights
weights = np.array([1.0, 1.0])

Steepest Descent
loss_values = []
learning_rate = 0.001

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Logistic Regression via Automatic Differentiation

for i in range(100):
loss_values.append(loss(weights))
step = gradient_loss(weights)
weights -= step * learning_rate

Plot the decision boundary
x_min, x_max = train_X[:, 0].min() - 0.5, train_X[:, 0].max() + 0.5
y_min, y_max = train_X[:, 1].min() - 0.5, train_X[:, 1].max() + 0.5
x_mesh, y_mesh = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))
Z = predict(weights, np.c_[x_mesh.ravel(), y_mesh.ravel()])
Z = Z.reshape(x_mesh.shape)
cs = pylab.contourf(x_mesh, y_mesh, Z, cmap=pylab.cm.Spectral)
pylab.scatter(train_X[:, 0], train_X[:, 1], c=train_y, cmap=pylab.cm.Spectral)
pylab.colorbar(cs)

Plot the loss over each step
pylab.figure()
pylab.plot(loss_values)
pylab.xlabel("Steps")
pylab.ylabel("Loss")
pylab.show()

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

TensorFlow

I Open source library for numerical computation using data flow
graphs.

I Graph nodes represent mathematical operations and edges
represent multidimensional data arrays (tensors) that flow
between them.

I Deploy computation to one or more CPUs or GPUs in a
desktop, server, or mobile device without rewriting code.

I Install via conda install tensorflow
I Datasets easily accessible through TF https://github.com/

tensorflow/datasets/blob/master/docs/datasets.md
I Extremely easy high-level API of TensorFlow called Keras1.
I Useful to understand the low-level APIs2 as well.

1https://www.tensorflow.org/guide/keras
2https://www.tensorflow.org/guide/low_level_intro

Nazar Khan Advanced Machine Learning

https://github.com/tensorflow/datasets/blob/master/docs/datasets.md
https://github.com/tensorflow/datasets/blob/master/docs/datasets.md
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/low_level_intro

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Keras

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)

])
model.compile(optimizer=’adam’,

loss=’sparse_categorical_crossentropy’,
metrics=[’accuracy’])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Computation Graph, Session, Run

import numpy as np
import tensorflow as tf

a = tf.placeholder(tf.float32, name=’a’) #placeholder contains fixed value set before running the graph
b = tf.placeholder(tf.float32, name=’b’)
c = tf.Variable(initial_value=[[5.0,5.0],[5.0,5.0]], name=’c’) #variable can change its value
d = tf.Variable(initial_value=[[3.0,3.0],[3.0,3.0]], name=’d’)
p = tf.placeholder(tf.float32, name=’p’)
q = tf.placeholder(tf.float32, name=’q’)
r = tf.Variable(initial_value=3.0, name=’r’)
s = tf.Variable(initial_value=4.0, name=’s’)
u = tf.constant(5.0, name=’u’) #constant value is same for all runs of the graph

e = (((a * p) + (b - q) - (c + r)) * d/s) * u #the computation graph

#setup a session
sess = tf.Session()
writer = tf.summary.FileWriter("./temp") #for TensorBoard
writer.add_graph(sess.graph)

#run the session
sess.run(tf.global_variables_initializer())
result = sess.run(e,feed_dict={p:1.0, q:2.0, a:[[1,1],[1,1]],b:[[2,2],[2,2]]}) #feed the placeholders
print("Result: ", result)

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Computation Graph, Session, Run

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

TensorBoard

I Collection of web applications for inspecting and
understanding runs and graphs in TF.

I Useful for understanding extremely complex computations such
as deep networks and debugging and optimizing them.

I Currently supports five visualizations:
1. scalars
2. images
3. audio
4. histograms
5. graphs

I Run your code via python tf_comp_graph.py
I Start TensorBoard service via tensorboard –logdir temp.
I Open localhost:6006 in your browser.
I Note that temp/ should only contain 1 summary.

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Machine Learning in TensorFlow

I Linear regression
I Logistic regression
I Neural Network
I CNN

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Two-Layer Neural Network in TensorFlow

import numpy as np
import tensorflow as tf

Generate Random Data
examples = 1000
features = 100
x_data = np.random.randn(examples, features)
y_data = np.random.randn(examples,1)

Define the Neural Network Model
hidden_layer_nodes = 10
X = tf.placeholder(tf.float32, shape=[None, features], name = "X")
y = tf.placeholder(tf.float32, shape=[None, 1], name = "y")
w1 = tf.Variable(tf.random_normal(shape=[features,hidden_layer_nodes]), name="w1")
b1 = tf.Variable(tf.random_normal(shape=[hidden_layer_nodes]), name="b1")
w2 = tf.Variable(tf.random_normal(shape=[hidden_layer_nodes,1]), name="w2")
b2 = tf.Variable(tf.random_normal(shape=[1,1]), name="b2")
hidden_output = tf.nn.relu(tf.add(tf.matmul(X, w1), b1), name="hidden_output")
y_hat = tf.nn.relu(tf.add(tf.matmul(hidden_output, w2), b2), name="y_hat")
loss = tf.reduce_mean(tf.square(y_hat - y), name="loss")

Set up the gradient descent
learning_rate = 0.05
optimiser = tf.train.GradientDescentOptimizer(learning_rate)
train_step = optimiser.minimize(loss)

sess = tf.Session()
writer = tf.summary.FileWriter("./temp")
writer.add_graph(sess.graph)

Nazar Khan Advanced Machine Learning

Python Automatic Differentiation Forward Reverse AD in Python TensorFlow

Two-Layer Neural Network in TensorFlow

sess.run(tf.global_variables_initializer())

epochs = 5000
batch_size = 5

Before Training
curr_loss = sess.run(loss, feed_dict={X:x_data, y:y_data})
print("Loss before training:", curr_loss)

for i in range(epochs):
rand_index = np.random.choice(examples, size=batch_size)
sess.run(train_step, feed_dict={X:x_data[rand_index], y:y_data[rand_index]})

After Training
curr_loss = sess.run(loss, feed_dict={X:x_data, y:y_data})
print("Loss before training:", curr_loss)

Loss before training: 42.431
Loss before training: 0.976375

Nazar Khan Advanced Machine Learning

	Python
	Automatic Differentiation
	Forward
	Reverse
	AD in Python
	TensorFlow

