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Support Vector Machines

I One of the most influential machine learning techniques of the
last 20 years.

I Essentially for binary classification via discriminant functions.
I Map input x directly to decision.
I Global optima due to convex optimization problem.
I No posterior probabilities.
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Linear Classification via Discriminant Fucntions
Recap

I For 2-class linear classification with ±1 targets, we use the
linear discriminant function

y(x) = wTφ(xn) + b

I Training: learn w∗ and b∗ from data x1, . . . , xN with targets
t1, . . . , tN .

I Testing: classify new x via sign(y(x)).
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Linearly Separable Case
Maximum Margin Classifiers

I Assume dataset is linearly separable.
I That means at least one w, b configuration exists for which

yn > 0 for all xn having tn = 1 and yn < 0 for all xn having
tn = −1. That is, tnyn > 0 ∀n.

I Define margin as the distance of the closest training point
from the decision surface.

I Basic SVM idea: choose decision surface for which margin is
maximised.

I If the most difficult points are maximally-separated, the rest
will be separated even better.
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Linearly Separable Case
Maximum Margin Classifiers
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Linearly Separable Case
Maximum Margin Classifiers

I Recall from the linear classification lectures that for a decision
surface y(x) = 0

I vector w is normal to the decision surface, and
I distance of point x from the decision surface is given by |y(x)|||w|| .

I For linearly separable training data |y(xn)| = tnyn for any
correct w and b.
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Linearly Separable Case
Maximum Margin Classifiers

I So distance of training point xn can be written as

|y(xn)|
||w||

=
tny(xn)
||w||

=
tn
(
wTφ(xn) + b

)
||w||

I For decision surface defined by w, b, the margin is given by

margin(w, b) = min
n

tn
(
wTφ(xn) + b

)
||w||

=
1
||w||

min
n

tn
(
wTφ(xn) + b

)
I Optimal SVM decision boundary maximises the margin

w∗, b∗ = argmax
w,b

margin(w, b)

= argmax
w,b

{
1
||w||

min
n

tn
(
wTφ(xn) + b

)}
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Linearly Separable Case
Maximum Margin Classifiers

Figure: The margin is defined as the perpendicular distance between the
decision boundary and the closest of the data points, as shown on the left
figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is
determined by a subset of the data points, known as support vectors,
which are indicated by the circles.
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Linearly Separable Case
Maximum Margin Classifiers

I Distance to boundary does not change when w and b are both
scaled by k . (Verify this)

I Therefore, for the closest point xc we can scale w and b by
1

tc(wTφ(xc )+b)
in order to set

tc
(
wTφ(xc) + b

)
= 1

I For all other training points xn, tn
(
wTφ(xn) + b

)
will then be

greater than 1.
I Therefore, we have the set of N constraints

tn
(
wTφ(xn) + b

)
≥ 1, n = 1, . . . ,N

I From now on, we can redefine our margin as 1.
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Linearly Separable Case
Primal SVM Formulation

I Since minn tn
(
wTφ(xn) + b

)
= 1, the SVM optimisation

amounts to just the maximisation

w∗, b∗ = argmax
w,b

1
‖w‖

= argmin
w,b
‖w‖2

subject to N constraints

tn
(
wTφ(xn) + b

)
≥ 1, n = 1, . . . ,N

which is a quadratic programming problem.
I Minimisation of a quadratic function.
I Subject to linear constraints.

I This is known as the primal SVM formulation.
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Linearly Separable Case
Primal SVM Formulation

I Well-known solutions/packages/libraries exist for solving QP
problems.

I Computational complexity of QP for M variables is O(M3).
I For high-dimensional spaces (M > N), a dual SVM

formulation exists with O(N3) complexity.
I Some QP implementations solve the dual faster than the

primal.
I Derivation of the dual formulation requires a thorough

understanding of Lagrange multipliers.
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Lagrange Multipliers

I We have already seen the elegant method of Lagrange
Multipliers for optimising functions subject to some
constraints.
1. Maximise f (x) subject to equality constraint g(x) = 0.
2. Minimise f (x) subject to equality constraint g(x) = 0.
3. Maximise f (x) subject to inequality constraint g(x) ≥ 0.
4. Minimise f (x) subject to inequality constraint g(x) ≥ 0.
5. Multiple constraints

I We have already covered problem 1 in CS-567.
I We will cover rest of the problems in this lecture.
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Lagrange Multipliers
Problem 1: Maximisation with equality constraint

I For any surface g(x) = 0, the gradient ∇g(x) is orthogonal to
the surface.

I At any maximiser x∗ of f (x) that also satisfies g(x) = 0,
∇f (x) must also be orthogonal to the surface g(x) = 0.

I If ∇f (x) is orthogonal to g(x) = 0 at x∗, then any movement
around x∗ along surface g(x) = 0 is orthogonal to ∇f (x) and
will not increase the value of f .

I The only way to increase value of f at x∗ is to leave the
constraint surface g(x) = 0.
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I So, at any maximiser x∗, ∇f and ∇g are parallel (or
anti-parallel) vectors.

I This can be stated mathematically as

∇f + λ∇g = 0

where λ 6= 0 is the so-called Lagrange multiplier.
I This can also be formulated as the unconstrained maximisation

of the so-called Lagrangian function

L(x, λ) = f (x) + λg(x)

with respect to x and λ.
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Lagrange Multipliers
Problem 2: Minimisation with equality constraint

I Minimisation of f (x) is equivalent to maximisation of −f (x).
I At any maximiser x∗ of −f (x), we will have

−∇f + λ∇g = 0

I This corresponds to unconstrained maximisation of

−f (x) + λg(x)

or equivalently the unconstrained minimisation w.r.t x of the
Lagrangian

L(x, λ) = f (x)− λg(x)
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Lagrange Multipliers
Problem 3: Maximisation with inequality constraint

I When the constraint g(x) ≥ 0, x∗ can be either
1. on the constraint surface (active constraint g(x) = 0), or
2. within the constraint surface (inactive constraint g(x) > 0)

I Case 1 with g(x) = 0 implies λ > 0 since ∇f must be
anti-parallel. (Why anti-parallel?)

I Case 2 with g(x) > 0 does not constrain the direction of ∇f .
All that is required from a maximiser x∗ is ∇f |x∗ = 0 which
implies λ = 0.
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I Combining both cases, we have three conditions

g(x) ≥ 0
λ ≥ 0

λg(x) = 0

I These three conditions are known as the Karush-Kuhn-Tucker
(KKT) conditions for optimisation with inequality constraints.

I So the unconstrained maximisation uses the Lagrangian
function

L(x, λ) = f (x) + λg(x)

and satisfies the three KKT conditions.
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Lagrange Multipliers
Problem 4: Minimisation with inequality constraint

I Corresponds to unconstrained minimisation w.r.t x and
maximisation w.r.t λ of the Lagrangian function

L(x, λ) = f (x)− λg(x)

and satisfies the three KKT conditions.
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Lagrange Multipliers
Problem 5: Multiple constraints

I For maximisation with K constraints, the Lagrangian uses K
Lagrange multipliers λk and is written as

L(x,λ) = f (x) +
K∑

k=1

λkgk(x)
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Dual SVM Formulation

I The SVM problem minimises 1
2‖w‖

2 subject to N inequality
constraints of the form tn

(
wTφ(xn) + b

)
− 1 ≥ 0.

I The Lagrangian function can be written as

L(w, b, a) =
1
2
‖w‖2 −

N∑
n=1

an
{
tn
(
wTφ(xn) + b

)
− 1
}

where an ≥ 0 are the N Lagrange multipliers.
I The KKT conditions can be written as

an ≥ 0

tn
(
wTφ(xn) + b

)
− 1 ≥ 0

an
{
tn
(
wTφ(xn) + b

)
− 1
}
= 0
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I Setting the gradients of the Lagrangian to zero

0 ≡ ∂L

∂w
=⇒ w =

N∑
n=1

antnφ(xn)

0 ≡ ∂L

∂b
=⇒

N∑
n=1

antn = 0

I By replacing these two conditions in the Lagrangian, we can
eliminate w and b to obtain the dual SVM formulation in just
the N variables an.

I Take-home Quiz 4: Show that by eliminating w and b from the
Lagrangian L(w, b, a), we obtain the expression for the dual

L̃(a) =
N∑

n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmφ(xn)Tφ(xm)
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I The dual formulation of the max-margin SVM problem is the
maximisation of

L̃(a) =
N∑

n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntm φ(xn)Tφ(xm)︸ ︷︷ ︸
k(xn,xm)

w.r.t a subject to the N + 1 constraints

an ≥ 0, n = 1, . . . ,N
N∑

n=1

antn = 0

I This is once again a QP problem but in N variables with
complexity O(N3).
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The Kernel Trick

I Scalar product φ(xn)Tφ(xm) measures similarity in feature
space φ(·).

I Similarity can be also be measured by alternative functions.
For example, Euclidean distance between xn and xm.

I The Kernel Trick: Replace scalar product by some other, more
suitable kernel function k(xn, xm).

I Also known as kernel substitution.
I This is what gives SVMs the flexibility to be applied to
many different kinds of problems.

I For example, we can have kernels like
k(web page 1, web page 2), k(document 1, document 2),
k(DNA sequence 1,DNA sequence 2),
k(sentence 1, sentence 2), · · · .
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I If we have the kernel value k(xn, xm), we don’t even need to
compute feature φ(x).

I Allows us to work in very high (even infinite) dimensional
feature spaces.

I Any algorithm (not just SVMs) in which inputs appear only in
terms of scalar products, can be made more powerful by
replacing the scalar products with more powerful,
problem-specific kernel functions.

I Kernel linear regression.
I Kernel PCA.
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Dual SVM Formulation

I Notice that by moving to the dual formulation, we have
sacrificed the parametric nature of the primal formulation.

I This means that in the dual formulation, we need all the
training data at test time.

I This is similar to nearest-neighbour classifiers, Parzen windows
based density estimation, etc.

I However, SVMs require only a subset of the training data –
the so-called support vectors.

I So we get the best of both worlds!
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Support Vectors

I The classifier output can be written as

y(x) = wTφ(x) + b

=
N∑

n=1

antn φ(xn)Tφ(x)︸ ︷︷ ︸
k(xn,x)

+b

I All data points xn for which an = 0 have no role in
determining the classifier’s output.

I Therefore, we only need to store the training data points for
which an > 0.

I These data points are called the support vectors.

y(x) =
∑
m∈S

amtmk(xn, xm) + b

where S is the set of indices of the support vectors.
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Determining b

I From the KKT conditions, we know that for any support
vector, i.e. an > 0, we must have

tn
(
wTφ(xn) + b

)
= 1

=⇒ tn

(∑
m∈S

amtmk(xn, xm) + b

)
= 1

I Multiplying both sides by tn and using the fact that t2n = 1, we
obtain an estimate for b

b = tn −
∑
m∈S

amtmk(xn, xm)

I A better estimate for b can be obtained by averaging over all
support vectors

b =
1
|S|
∑
n∈S

(
tn −

∑
m∈S

amtmk(xn, xm)

)
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Kernels

I Linear kernels k(x, x0) = xTx0.
I Polynomial kernels k(x, x0) = (1+ xTx0)

d for any d > 0.
I Contains all polynomial terms up to degree d .

I Gaussian kernels k(x, x0) = exp
(
−||x−x0||2

2σ2

)
for σ > 0.

I Infinite dimensional feature space.

I https://youtu.be/XUj5JbQihlU?t=812
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Summary

I Data may be linearly separable in a high dimensional feature
space φ, but not in the input space x.

I Classifiers can be learnt for this high dimensional feature space
without actually computing φ(x).

I Kernel trick replaces the scalar product in the dual formulation.
I Kernel trick can be used in other ML approaches.
I Kernels can be applied to a large variety of objects (not just

vectors).
I So far: linearly separable data. Next we discuss SVMs for

non-separable data.

Nazar Khan Advanced Machine Learning



Introduction Hard Margin Lagrange Multipliers Dual Kernel Trick Soft Margin Extensions

Linearly Non-Separable Case

I Assume data is linearly non-separable.
I We can still learn a linear decision boundary in φ-space

corresponding to a non-linear one in x-space.
I However, such exact non-linear separation of training data can

lead to over-fitting.
I It can be a good idea to allow some misclassifications of the

training points.
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Slack Variables

I This is achieved by replacing the hard margin constraints
tnyn ≥ 1 by soft margin constraints tnyn + ξn ≥ 1 where
ξn ≥ 0.

I The addition of the slack variables ξn allows tnyn to be less
than 1 and still satisfy the soft margin constraint.

I If hard constraint tnyn ≥ 1 is not being satisfied, we help by
adding ξn in order to reach 1.

I ξn represents the minimum amount to be added to make
tnyn + ξn = 1.
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Slack Variables

ξn = 0 correctly classified either on or on the correct side of the margin
0 < ξn < 1 correctly classified within the margin
ξn = 1 on the decision surface
ξn > 1 misclassified
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SVM with Soft Margin Costraints

I Goal: Maximise margin while softly penalising points that lie
on the wrong side of the margin.

I Achieved via

arg min
w,b,ξ1,...,ξN

1
2
‖w‖2 + C

N∑
n=1

ξn

s.t. tnyn + ξn ≥ 1 for n = 1, . . . ,N
ξn ≥ 0 for n = 1, . . . ,N

I Parameter C > 0 controls the trade-off between
misclassifications and maximising the margin.

I Large C =⇒ penalising slack =⇒ good training
performance =⇒ over-fitting.

I Small C allows misclassifications on training data.
I So C is like an inverse-regularisation parameter.

I The sum
∑N

n=1 ξn is an upper-bound on the number of
misclassifications. (Why?)
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Dual Formulation

I We have a constrained minimisation problem with inequality
constraints.

I Lagrangian can be written as

L(w, b, a,µ) =
1
2
‖w‖2 + C

N∑
n=1

ξn

−
N∑

n=1

an {tnyn + ξn − 1}︸ ︷︷ ︸
an ≥ 0

tnyn + ξn − 1 ≥ 0
an {tnyn + ξn − 1} = 0

−
N∑

n=1

µnξn︸ ︷︷ ︸
µn ≥ 0
ξn ≥ 0

µnξn = 0

where an ≥ 0 are Lagrange multipliers for the N soft margin
constraints and µn ≥ 0 are Lagrange multipliers for the N
slack variable constraints.
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Dual Formulation

I The 6N KKT conditions can be written as

an ≥ 0
tnyn + ξn − 1 ≥ 0

an {tnyn + ξn − 1} = 0
µn ≥ 0
ξn ≥ 0

µnξn = 0
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Dual Formulation

I Similar to the separable case, we can set

0 ≡ ∂L

∂w
=⇒ w =

N∑
n=1

antnφ(xn)

0 ≡ ∂L

∂b
=⇒

N∑
n=1

antn = 0

0 ≡ ∂L

∂ξn
=⇒ an = C − µn

to optimise out (eliminate)
I the original parameters w, b,
I the slack variables ξn, and
I Lagrange multipliers µn
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Dual Formulation

I This yields the dual formulation

L̃(a) =
N∑

n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntm φ(xn)Tφ(xm)︸ ︷︷ ︸
k(xn,xm)

I The constraints that carry over are an ≥ 0 and
∑N

n=1 antn = 0.
I Since an = C − µn and µn ≥ 0, we must have an ≤ C .
I So the N + 1 constraints become

0 ≤ an ≤ C , n = 1, . . . ,N (box constraints)
N∑

n=1

antn = 0

I Once again, we have a QP problem in N variables.
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Dual Formulation

I After solving the QP problem for a∗, we get an = 0 for some
data points. These points play no role during predictions for
arbitrary x.

I For the remaining points (i.e., support vectors), we have 2
cases:
1. an < C =⇒ µn > 0 =⇒ ξn = 0 =⇒ xn lies on (or beyond)

margin.
2. an = C =⇒ µn = 0 =⇒ ξn > 0 which in turn yields 3 cases

2.1 ξn < 1 =⇒ xn lies within the margin but correctly classified.
2.2 ξn = 1 =⇒ xn lies on the decision surface.
2.3 ξn > 1 =⇒ xn is misclassified.

I A popular technique for SVM training is sequential minimal
optimisation (SMO) which avoids quadratic programming.

I Scales between O(N) and O(N2).
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Multiclass SVMs

I An SVM is fundamentally a binary classifier.
I Can be trained for multiclass problems via

I One-versus-rest approach. Leads to ambiguous classification
regions, imbalanced datasets, differing output scales.

I One-vs-one approach. Leads to ambiguous classification
regions and slower training and testing.

I One-vs-rest approach is used more often.
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Extensions
Structured Outputs

I Structured output variables have dependencies between each
other.

I Images, trees, DNA sequences, etc.

I Structural SVMs have been developed for such structured
output spaces.

I Similar max-margin framework can be used.
I Tsochantaridis I, Hofmann T, Joachims T, Altun Y (2004)

Support vector machine learning for interdependent and
structured output spaces. In: International Conference on
Machine Learning (ICML), pp 104–112
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Extensions
Others

I Regression problems can be addressed by Support Vector
Regression (SVR).

I Posterior probabilities are output by a Relevance Vector
Machine (RVM).
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Mid-term Exam

I Take-home quizzes.
I Blue points in lecture slides.
I Everything else in lecture slides.
I Practical things you learned while completing the projects.
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