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Introduction

Support Vector Machines

v

One of the most influential machine learning techniques of the
last 20 years.

v

Essentially for binary classification via discriminant functions.

v

Map input x directly to decision.

v

Global optima due to convex optimization problem.

v

No posterior probabilities.
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Hard Margin

Linear Classification via Discriminant Fucntions
Recap

» For 2-class linear classification with 41 targets, we use the
linear discriminant function

y(x) = w@(xn) + b

» Training: learn w* and b* from data x1, ..., xy with targets
Blgooog e
» Testing: classify new x via sign(y(x)).
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Hard Margin

Linearly Separable Case
Maximum Margin Classifiers

» Assume dataset is linearly separable.

» That means at least one w, b configuration exists for which
yn > 0 for all x, having t, =1 and y, < 0 for all x,, having
t, = —1. Thatis, t,y, > 0 Vn.

» Define margin as the distance of the closest training point
from the decision surface.

» Basic SVM idea: choose decision surface for which margin is
maximised.

» If the most difficult points are maximally-separated, the rest
will be separated even better.
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Hard Margin

Linearly Separable Case
Maximum Margin Classifiers

y>0 T2
y=0
y<0 R
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Hard Margin

Linearly Separable Case
Maximum Margin Classifiers

» Recall from the linear classification lectures that for a decision
surface y(x) =0
» vector w is normal to the decision surface, and

» distance of point x from the decision surface is given by ()|

[Twl[ *

» For linearly separable training data |y(x,)| = tny, for any
correct w and b.
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Hard Margin

Linearly Separable Case
Maximum Margin Classifiers

» So distance of training point x,, can be written as

y(xn)l _ tay(xa) _ tn (W' B(xn) + b)
[|wll [wl| [ wl]

» For decision surface defined by w, b, the margin is given by

tn (W' p(xn) + b)

margin(w, b) = min

n [ wl]
1 .
— m mr,n tl‘l (WT¢(Xn) + b)

» Optimal SVM decision boundary maximises the margin

w*, b* = arg mag< margin(w, b)

=2 g i e (w7600 +5)
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Hard Margin

Linearly Separable Case
Maximum Margin Classifiers

margin

Figure: The margin is defined as the perpendicular distance between the
decision boundary and the closest of the data points, as shown on the left
figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is
determined by a subset of the data points, known as support vectors,
which are indicated by the circles.
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Hard Margin

Linearly Separable Case
Maximum Margin Classifiers

» Distance to boundary does not change when w and b are both
scaled by k. (Verify this)

» Therefore, for the closest point x. we can scale w and b by

1 -
— Y order to set
tc(WT¢(XC)+b) n

i (wT(b(xC) + b) =1

> For all other training points x,, t, (W' @(x,) + b) will then be
greater than 1.

» Therefore, we have the set of N constraints
t, <WT¢(x,,)+b) >1, n=1,...,N

» From now on, we can redefine our margin as 1.
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Hard Margin

Linearly Separable Case
Primal SVM Formulation

» Since min, t, (quS(x,,) + b) =1, the SVM optimisation
amounts to just the maximisation

1
w*, b* = arg max —— = arg min|jw||?
w,b ||wl| w,b

subject to N constraints

tn<wT¢(xn)—|—b) >1, n=1,...,N

which is a quadratic programming problem.

» Minimisation of a quadratic function.
» Subject to linear constraints.

» This is known as the primal SVM formulation.
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Hard Margin

Linearly Separable Case
Primal SVM Formulation

Well-known solutions/packages/libraries exist for solving QP
problems.

Computational complexity of QP for M variables is O(M3).

For high-dimensional spaces (M > N), a dual SVM
formulation exists with O(N3) complexity.

Some QP implementations solve the dual faster than the
primal.

Derivation of the dual formulation requires a thorough
understanding of Lagrange multipliers.

Nazar Khan
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Lagrange Multipliers

Lagrange Multipliers

» We have already seen the elegant method of Lagrange
Multipliers for optimising functions subject to some
constraints.

1. Maximise f(x) subject to equality constraint g(x) = 0.
2. Minimise f(x) subject to equality constraint g(x) = 0.
3. Maximise f(x) subject to inequality constraint g(x) > 0.
4. Minimise f(x) subject to inequality constraint g(x) > 0.
5. Multiple constraints

» We have already covered problem 1 in CS-567.

» We will cover rest of the problems in this lecture.
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Lagrange Multipliers

Lagrange Multipliers
Problem 1: Maximisation with equality constraint

» For any surface g(x) = 0, the gradient Vg(x) is orthogonal to
the surface.
» At any maximiser x* of f(x) that also satisfies g(x) = 0,
Vf(x) must also be orthogonal to the surface g(x) = 0.
» If V£(x) is orthogonal to g(x) = 0 at x*, then any movement
around x* along surface g(x) = 0 is orthogonal to V£(x) and
will not increase the value of f.
» The only way to increase value of f at x* is to leave the
constraint surface g(x) = 0.

V()

XA

9(x) =0
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Lagrange Multipliers

» So, at any maximiser x*, Vf and Vg are parallel (or
anti-parallel) vectors.

» This can be stated mathematically as
Vf+AVg=0

where X\ = 0 is the so-called Lagrange multiplier.

» This can also be formulated as the unconstrained maximisation
of the so-called Lagrangian function

L(x,\) = f(x) + Ag(x)

with respect to x and .
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Lagrange Multipliers

Lagrange Multipliers
Problem 2: Minimisation with equality constraint

» Minimisation of f(x) is equivalent to maximisation of —f(x).
» At any maximiser x* of —f(x), we will have
—VFf+AVg=0
» This corresponds to unconstrained maximisation of
—f(x) + Ag(x)

or equivalently the unconstrained minimisation w.r.t x of the
Lagrangian

L(x, A) = f(x) = Ag(x)
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Lagrange Multipliers

Lagrange Multipliers
Problem 3: Maximisation with inequality constraint

» When the constraint g(x) > 0, x* can be either
1. on the constraint surface (active constraint g(x) = 0), or
2. within the constraint surface (inactive constraint g(x) > 0)
» Case 1 with g(x) = 0 implies A > 0 since Vf must be
anti-parallel. (Why anti-parallel?)
» Case 2 with g(x) > 0 does not constrain the direction of Vf.
All that is required from a maximiser x* is Vf|yx» = 0 which
implies A = 0.
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Lagrange Multipliers

» Combining both cases, we have three conditions

g(x) >0

Ag(x) ; 0

» These three conditions are known as the Karush-Kuhn-Tucker
(KKT) conditions for optimisation with inequality constraints.

» So the unconstrained maximisation uses the Lagrangian
function

L(x,\) = f(x) + Ag(x)

and satisfies the three KKT conditions.
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Lagrange Multipliers

Lagrange Multipliers
Problem 4: Minimisation with inequality constraint

» Corresponds to unconstrained minimisation w.r.t x and
maximisation w.r.t X of the Lagrangian function

L(x,A) = f(x) = Ag(x)

and satisfies the three KKT conditions.
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Lagrange Multipliers

Lagrange Multipliers
Problem 5: Multiple constraints

» For maximisation with K constraints, the Lagrangian uses K
Lagrange multipliers Ax and is written as

K

L(x,A) = f(x) + Z Ak (X)

k=1
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Dual

Dual SVM Formulation

» The SVM problem minimises %||w||? subject to N inequality
constraints of the form t, (W ¢(x,) + b) — 1 > 0.

» The Lagrangian function can be written as
1 N
L(w, b,a) = Slw|2 = 3 an {tn (W p(xn) + b) — 1}
2 n=1

where a, > 0 are the N Lagrange multipliers.

» The KKT conditions can be written as
an >0
-
tn (w ¢(xn)+b) ~1>0
dnp {tn (WT¢(Xn) + b> — 1} =0
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Dual

» Setting the gradients of the Lagrangian to zero

oL N
Oza—w = w:;ant,,qb(x,,)
N
oL
0_% — ;antn—o

» By replacing these two conditions in the Lagrangian, we can
eliminate w and b to obtain the dual SVM formulation in just
the N variables a,,.

» Take-home Quiz 4: Show that by eliminating w and b from the
Lagrangian L(w, b,a), we obtain the expression for the dual

N N N

Z(a) = Z ap — %Z Z anamtntm¢(xn)T¢(xm)

n=1 n=1 m=1
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Dual

» The dual formulation of the max-margin SVM problem is the
maximisation of

N N

N
Z(a) = Z an — %Z Z anamtpntm ¢(Xn)T¢(Xm)

n=1 n=1m=1 K(XosXm)

w.r.t a subject to the N + 1 constraints

a,>0, n=1,....N
N

Za,,t,,zo

n=1

» This is once again a QP problem but in N variables with
complexity O(N3).
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Kernel Trick

The Kernel Trick

» Scalar product ¢(x,)" @(xm) measures similarity in feature
space ¢(+).
» Similarity can be also be measured by alternative functions.
For example, Euclidean distance between x, and x,.
» The Kernel Trick: Replace scalar product by some other, more
suitable kernel function k(xp,Xm).
» Also known as kernel substitution.
» This is what gives SVMs the flexibility to be applied to
many different kinds of problems.
» For example, we can have kernels like
k(web page 1, web page 2), k(document 1, document 2),
k(DNA sequence 1,DNA sequence 2),
k(sentence 1, sentence 2),---.
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Kernel Trick

> If we have the kernel value k(x,,X,), we don't even need to
compute feature ¢(x).

» Allows us to work in very high (even infinite) dimensional
feature spaces.

» Any algorithm (not just SVMs) in which inputs appear only in
terms of scalar products, can be made more powerful by
replacing the scalar products with more powerful,
problem-specific kernel functions.

» Kernel linear regression.
» Kernel PCA.
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Kernel Trick

Dual SVM Formulation

» Notice that by moving to the dual formulation, we have
sacrificed the parametric nature of the primal formulation.

» This means that in the dual formulation, we need all the
training data at test time.

» This is similar to nearest-neighbour classifiers, Parzen windows
based density estimation, etc.

» However, SVMs require only a subset of the training data —
the so-called support vectors.

» So we get the best of both worlds!
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Kernel Trick

Support Vectors

» The classifier output can be written as

y(x) = w (x) + b

N
= anta B(xn) T B(x) +b
n=1 ¥
k(xn,x)
» All data points x, for which a, = 0 have no role in
determining the classifier's output.

» Therefore, we only need to store the training data points for
which a, > 0.

» These data points are called the support vectors.
y(x) = Z amtmk(Xp, Xm) + b
meS

where S is the set of indices of the support vectors.
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Kernel Trick

Determining b

» From the KKT conditions, we know that for any support
vector, i.e. a, > 0, we must have

i (WT¢(X,,) + b) =1

= t, (Z amtmk(Xn, Xm) + b> =}

meS

» Multiplying both sides by t, and using the fact that t2 = 1, we
obtain an estimate for b

b=t,— Z amtmk(Xn, Xm)
mesS
» A better estimate for b can be obtained by averaging over all
support vectors

b= ‘81| Z (tn — Z amtmk(x,,,xm)>

nesS meS
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Kernel Trick

Kernels

» Linear kernels k(x,x) = x"xq.

» Polynomial kernels k(x, xo) = (1 + x"xg)? for any d > 0.
» Contains all polynomial terms up to degree d.

» Gaussian kernels k(x,xg) = exp <M) for o > 0.
» Infinite dimensional feature space.

> https://youtu.be/XUj5JbQih1U?7t=812
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Kernel Trick

Summary

Data may be linearly separable in a high dimensional feature
space ¢, but not in the input space x.

Classifiers can be learnt for this high dimensional feature space
without actually computing ¢(x).

Kernel trick replaces the scalar product in the dual formulation.
Kernel trick can be used in other ML approaches.

Kernels can be applied to a large variety of objects (not just
vectors).

So far: linearly separable data. Next we discuss SVMs for
non-separable data.

Nazar Khan
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Soft Margin

Linearly Non-Separable Case

v

Assume data is linearly non-separable.

v

We can still learn a linear decision boundary in ¢-space
corresponding to a non-linear one in x-space.

v

However, such exact non-linear separation of training data can
lead to over-fitting.

v

It can be a good idea to allow some misclassifications of the
training points.
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Soft Margin

Slack Variables

» This is achieved by replacing the hard margin constraints
thyn > 1 by soft margin constraints t,y, + &, > 1 where
&n > 0.

» The addition of the slack variables &, allows t,y, to be less

than 1 and still satisfy the soft margin constraint.
» If hard constraint t,y, > 1 is not being satisfied, we help by

adding &, in order to reach 1.

> &, represents the minimum amount to be added to make
thyn + gn = Il
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Soft Margin

Slack Variables

n =0 correctly classified either on or on the correct side of the margin
0 <&, <1 correctly classified within the margin

En=1l on the decision surface

&n>1 misclassified

e(=0

€=0
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Soft Margin

SVM with Soft Margin Costraints

Goal: Maximise margin while softly penalising points that lie
on the wrong side of the margin.
Achieved via

N
1 2
in C
arg ,min _Sllw]®+ nz_;fn

st. tayyn+&,>1forn=1,....N
&n>0forn=1,...,N

Parameter C > 0 controls the trade-off between
misclassifications and maximising the margin.

» Large C = penalising slack = good training

performance = over-fitting.

» Small C allows misclassifications on training data.

» So C is like an inverse-regularisation parameter.
The sum Z,’Yzl &, is an upper-bound on the number of
misclassifications. (Why?)

Nazar Khan
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Soft Margin

Dual Formulation

» We have a constrained minimisation problem with inequality
constraints.

» Lagrangian can be written as

N
1
L(Wa ba a?l"’) :EHWH2 + ngn
n=1

N N
- Zan{tnYn+§n_1} - Z,Uné.n
n=1 n=1

——
an=>0 ,UnZO
tnYn+§n_120 fnZO

an{tn)/n‘i'gn_l}zo ,UJngn:O

where a, > 0 are Lagrange multipliers for the N soft margin

constraints and p, > 0 are Lagrange multipliers for the N
slack variable constraints.
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Soft Margin

Dual Formulation

» The 6/N KKT conditions can be written as

an>0
tnyn+&6n—120
an{tayn+ & —1} =0
tn =0

§h >0

pn€n =0
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Soft Margin

Dual Formulation

» Similar to the separable case, we can set

oL N
Oza—w = w:;ant,,qb(x,,)
N
oL
O:% — ;antn—O
oL
Eaifn — an:C_,LLn

to optimise out (eliminate)
» the original parameters w, b,
» the slack variables &,, and
» Lagrange multipliers p,
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Soft Margin

Dual Formulation

v

This yields the dual formulation

N N N

(@)=Y an— 5" D anamtatm d(xn) bxn)

n=1 n=1 m=1 K(XnoXrm)

v

The constraints that carry over are a, > 0 and Z,’y:l Ealey = 0.

v

Since a, = C — pup and p, > 0, we must have a, < C.
So the N 4 1 constraints become

v

0<a,<C, n=1
N

Zant,,zo

n=1

Once again, we have a QP problem in N variables.

,...y, N (box constraints)

v
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Soft Margin

Dual Formulation

» After solving the QP problem for a*, we get a, = 0 for some
data points. These points play no role during predictions for

arbitrary x.
» For the remaining points (i.e., support vectors), we have 2
cases:
1. a,<C = pp,>0 = &, =0 = x, lies on (or beyond)
margin.

2. 3a,=C = u,=0 = &, > 0 which in turn yields 3 cases
2.1 £, <1 = x, lies within the margin but correctly classified.
2.2 £, =1 = x, lies on the decision surface.
2.3 &, >1 = x, is misclassified.
» A popular technique for SVM training is sequential minimal
optimisation (SMO) which avoids quadratic programming.

> Scales between O(N) and O(N?).
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Extensions

Multiclass SVMs

» An SVM is fundamentally a binary classifier.
» Can be trained for multiclass problems via

» One-versus-rest approach. Leads to ambiguous classification
regions, imbalanced datasets, differing output scales.

» One-vs-one approach. Leads to ambiguous classification
regions and slower training and testing.

» One-vs-rest approach is used more often.
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Extensions

Extensions
Structured Outputs

» Structured output variables have dependencies between each
other.

> Images, trees, DNA sequences, etc.

» Structural SV/Ms have been developed for such structured
output spaces.

» Similar max-margin framework can be used.
» Tsochantaridis |, Hofmann T, Joachims T, Altun Y (2004)
Support vector machine learning for interdependent and

structured output spaces. In: International Conference on
Machine Learning (ICML), pp 104-112
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Extensions

Extensions
Others

» Regression problems can be addressed by Support Vector
Regression (SVR).

» Posterior probabilities are output by a Relevance Vector
Machine (RVM).
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Extensions

Mid-term Exam

v

Take-home quizzes.

v

Blue points in lecture slides.

v

Everything else in lecture slides.

v

Practical things you learned while completing the projects.
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