CS-667 Advanced Machine Learning

Nazar Khan

PUCIT

Support Vector Machines

Support Vector Machines

- One of the most influential machine learning techniques of the last 20 years.
- Essentially for binary classification via discriminant functions.
- Map input x directly to decision.
- Global optima due to convex optimization problem.
- No posterior probabilities.

 Introduction
 Hard Margin
 Lagrange Multipliers
 Dual
 Kernel Trick
 Soft Margin

 Linear Classification via Discriminant Fucntions
 Recap
 Recap

 \blacktriangleright For 2-class linear classification with ± 1 targets, we use the linear discriminant function

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}_n) + b$$

- ► Training: learn \mathbf{w}^* and b^* from data $\mathbf{x}_1, \ldots, \mathbf{x}_N$ with targets t_1, \ldots, t_N .
- Testing: classify new x via sign(y(x)).

Hard Margin Linearly Separable Case Maximum Margin Classifiers

- Assume dataset is linearly separable.
- That means at least one w, b configuration exists for which $y_n > 0$ for all x_n having $t_n = 1$ and $y_n < 0$ for all x_n having $t_n = -1$. That is, $t_n y_n > 0 \ \forall n$.
- Define margin as the distance of the closest training point from the decision surface.
- Basic SVM idea: choose decision surface for which margin is maximised.
 - If the most difficult points are maximally-separated, the rest will be separated even better.

Hard Margin Linearly Separable Case Maximum Margin Classifiers

Extensions

Linearly Separable Case Maximum Margin Classifiers

- Recall from the linear classification lectures that for a decision surface y(x) = 0
 - \blacktriangleright vector ${\bf w}$ is normal to the decision surface, and
 - distance of point **x** from the decision surface is given by $\frac{|y(\mathbf{x})|}{||\mathbf{w}||}$.
- For linearly separable training data |y(x_n)| = t_ny_n for any correct w and b.

Linearly Separable Case Maximum Margin Classifiers

١

• So distance of training point x_n can be written as

$$\frac{|y(\mathbf{x}_n)|}{||\mathbf{w}||} = \frac{t_n y(\mathbf{x}_n)}{||\mathbf{w}||} = \frac{t_n \left(\mathbf{w}^T \phi(\mathbf{x}_n) + b\right)}{||\mathbf{w}||}$$

▶ For decision surface defined by \mathbf{w} , b, the margin is given by

$$margin(\mathbf{w}, b) = \min_{n} \frac{t_{n} \left(\mathbf{w}^{T} \phi(\mathbf{x}_{n}) + b\right)}{||\mathbf{w}||}$$
$$= \frac{1}{||\mathbf{w}||} \min_{n} t_{n} \left(\mathbf{w}^{T} \phi(\mathbf{x}_{n}) + b\right)$$

Optimal SVM decision boundary maximises the margin

$$egin{aligned} \mathbf{w}^*, b^* &= rg\max_{egin{smallmatrix} \mathbf{w}, b \ \mathbf{w}, b \ \end{bmatrix} \ &= rg\max_{egin{smallmatrix} \mathbf{w}, b \ \mathbf{w}, b \ \end{bmatrix}} \left\{ rac{1}{||\mathbf{w}||}\min_n t_n \left(\mathbf{w}^{\mathcal{T}} \phi(\mathbf{x}_n) + b
ight)
ight\} \end{aligned}$$

Linearly Separable Case Maximum Margin Classifiers

Figure: The margin is defined as the perpendicular distance between the decision boundary and the closest of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision boundary, as shown on the right. The location of this boundary is determined by a *subset of the data points*, known as *support vectors*, which are indicated by the circles.

Linearly Separable Case Maximum Margin Classifiers

- Distance to boundary does not change when w and b are both scaled by k. (Verify this)
- ► Therefore, for the closest point \mathbf{x}_c we can scale \mathbf{w} and b by $\frac{1}{t_c(\mathbf{w}^T \phi(\mathbf{x}_c)+b)}$ in order to set

$$t_c \left(\mathbf{w}^T \phi(\mathbf{x}_c) + b \right) = 1$$

- For all other training points \mathbf{x}_n , $t_n (\mathbf{w}^T \phi(\mathbf{x}_n) + b)$ will then be greater than 1.
- ▶ Therefore, we have the set of *N* constraints

$$t_n\left(\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n)+b\right)\geq 1, \ n=1,\ldots,N$$

From now on, we can redefine our margin as 1.

Linearly Separable Case Primal SVM Formulation

Since $\min_n t_n (\mathbf{w}^T \phi(\mathbf{x}_n) + b) = 1$, the SVM optimisation amounts to just the maximisation

$$\begin{split} \mathbf{w}^*, b^* &= \arg \max_{\mathbf{w}, b} \frac{1}{\|\mathbf{w}\|} = \arg \min_{\mathbf{w}, b} \|\mathbf{w}\|^2 \\ \text{subject to } N \text{ constraints} \\ t_n \left(\mathbf{w}^T \phi(\mathbf{x}_n) + b \right) \geq 1, \quad n = 1, \dots, N \end{split}$$

which is a quadratic programming problem.

- Minimisation of a *quadratic function*.
- Subject to *linear constraints*.
- ► This is known as the *primal* SVM formulation.

Linearly Separable Case Primal SVM Formulation

- Well-known solutions/packages/libraries exist for solving QP problems.
- Computational complexity of QP for M variables is $O(M^3)$.
- ▶ For high-dimensional spaces (M > N), a dual SVM formulation exists with O(N³) complexity.
- Some QP implementations solve the dual faster than the primal.
- Derivation of the dual formulation requires a thorough understanding of Lagrange multipliers.

Introduction

Lagrange Multipliers

- We have already seen the elegant method of Lagrange Multipliers for optimising functions subject to some constraints.
 - **1.** Maximise f(x) subject to *equality* constraint g(x) = 0.
 - 2. Minimise f(x) subject to equality constraint g(x) = 0.
 - **3.** Maximise f(x) subject to *inequality* constraint $g(x) \ge 0$.
 - **4.** Minimise f(x) subject to inequality constraint $g(x) \ge 0$.
 - 5. Multiple constraints
- ▶ We have already covered problem 1 in CS-567.
- We will cover rest of the problems in this lecture.

Lagrange Multipliers

Problem 1: Maximisation with equality constraint

- For any surface $g(\mathbf{x}) = 0$, the gradient $\nabla g(\mathbf{x})$ is orthogonal to the surface.
- At any maximiser x^* of f(x) that also satisfies g(x) = 0, $\nabla f(\mathbf{x})$ must also be orthogonal to the surface $g(\mathbf{x}) = 0$.
 - If $\nabla f(\mathbf{x})$ is orthogonal to $g(\mathbf{x}) = 0$ at \mathbf{x}^* , then any movement around \mathbf{x}^* along surface $g(\mathbf{x}) = 0$ is orthogonal to $\nabla f(\mathbf{x})$ and will not increase the value of f.
 - The only way to increase value of f at \mathbf{x}^* is to leave the constraint surface $g(\mathbf{x}) = 0$.

Introduction

l Ker

Extensions

- So, at any maximiser x^{*}, ∇f and ∇g are parallel (or anti-parallel) vectors.
- This can be stated mathematically as

$$\nabla f + \lambda \nabla g = 0$$

where $\lambda \neq 0$ is the so-called *Lagrange multiplier*.

This can also be formulated as the unconstrained maximisation of the so-called Lagrangian function

$$L(\mathbf{x},\lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

with respect to \mathbf{x} and λ .

Lagrange Multipliers *Problem 2: Minimisation with equality constraint*

- Minimisation of f(x) is equivalent to maximisation of -f(x).
- At any maximiser \mathbf{x}^* of $-f(\mathbf{x})$, we will have

Lagrange Multipliers

$$-\nabla f + \lambda \nabla g = 0$$

> This corresponds to unconstrained maximisation of

$$-f(\mathbf{x}) + \lambda g(\mathbf{x})$$

or equivalently the unconstrained minimisation w.r.t \boldsymbol{x} of the Lagrangian

$$L(\mathbf{x},\lambda) = f(\mathbf{x}) - \lambda g(\mathbf{x})$$

Lagrange Multipliers Problem 3: Maximisation with inequality constraint

- When the constraint $g(\mathbf{x}) \geq 0$, \mathbf{x}^* can be either
 - 1. *on* the constraint surface (active constraint $g(\mathbf{x}) = 0$), or
 - **2.** within the constraint surface (inactive constraint $g(\mathbf{x}) > 0$)
- Case 1 with g(x) = 0 implies λ > 0 since ∇f must be anti-parallel. (Why anti-parallel?)
- Case 2 with g(x) > 0 does not constrain the direction of ∇f. All that is required from a maximiser x* is ∇f|_{x*} = 0 which implies λ = 0.

Kerr

Combining both cases, we have three conditions

$$g(x) \ge 0$$

 $\lambda \ge 0$
 $\lambda g(x) = 0$

- These three conditions are known as the Karush-Kuhn-Tucker (KKT) conditions for optimisation with inequality constraints.
- So the unconstrained maximisation uses the Lagrangian function

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

and satisfies the three KKT conditions.

Introduction Hard Margin Lagrange Multipliers Dual Kerne Lagrange Multipliers Problem 4: Minimisation with inequality constraint

> Corresponds to unconstrained minimisation w.r.t x and maximisation w.r.t λ of the Lagrangian function

$$L(\mathbf{x},\lambda) = f(\mathbf{x}) - \lambda g(\mathbf{x})$$

and satisfies the three KKT conditions.

Introduction Hard Margin Lagrange Multipliers Dual Kernel Trick Soft Margin Extens
Lagrange Multipliers
Problem 5: Multiple constraints

 For maximisation with K constraints, the Lagrangian uses K Lagrange multipliers λ_k and is written as

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{k=1}^{K} \lambda_k g_k(\mathbf{x})$$

Introduction

Dual SVM Formulation

- ► The SVM problem *minimises* $\frac{1}{2} ||\mathbf{w}||^2$ subject to *N inequality* constraints of the form $t_n (\mathbf{w}^T \phi(\mathbf{x}_n) + b) 1 \ge 0$.
- The Lagrangian function can be written as

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n \left(\mathbf{w}^T \phi(\mathbf{x}_n) + b \right) - 1 \right\}$$

where $a_n \ge 0$ are the *N* Lagrange multipliers.

The KKT conditions can be written as

$$\begin{aligned} a_n &\geq 0\\ t_n \left(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n) + b \right) - 1 &\geq 0\\ a_n \left\{ t_n \left(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n) + b \right) - 1 \right\} &= 0 \end{aligned}$$

Setting the gradients of the Lagrangian to zero

$$\mathbf{0} \equiv \frac{\partial L}{\partial \mathbf{w}} \implies \mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$
$$\mathbf{0} \equiv \frac{\partial L}{\partial b} \implies \sum_{n=1}^{N} a_n t_n = \mathbf{0}$$

- By replacing these two conditions in the Lagrangian, we can eliminate w and b to obtain the dual SVM formulation in just the N variables a_n.
- ► Take-home Quiz 4: Show that by eliminating w and b from the Lagrangian L(w, b, a), we obtain the expression for the dual

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m)$$

 The *dual* formulation of the max-margin SVM problem is the maximisation of

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \underbrace{\phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m)}_{k(\mathbf{x}_n, \mathbf{x}_m)}$$

w.r.t a subject to the N + 1 constraints

$$a_n \ge 0, \quad n = 1, \dots, N$$

 $\sum_{n=1}^N a_n t_n = 0$

► This is once again a QP problem but in N variables with complexity O(N³).

The Kernel Trick

- Scalar product φ(x_n)^Tφ(x_m) measures similarity in feature space φ(·).
- Similarity can be also be measured by alternative functions.
 For example, Euclidean distance between x_n and x_m.
- The Kernel Trick: Replace scalar product by some other, more suitable kernel function k(x_n, x_m).
 - Also known as *kernel substitution*.
 - This is what gives SVMs the flexibility to be applied to many different kinds of problems.
 - For example, we can have kernels like k(web page 1, web page 2), k(document 1, document 2), k(DNA sequence 1,DNA sequence 2), k(sentence 1, sentence 2), ···.

- If we have the kernel value k(xn, xm), we don't even need to compute feature φ(x).
 - Allows us to work in very high (even infinite) dimensional feature spaces.
- Any algorithm (not just SVMs) in which inputs appear only in terms of scalar products, can be made more powerful by replacing the scalar products with more powerful, problem-specific kernel functions.
 - Kernel linear regression.
 - Kernel PCA.

Dual SVM Formulation

- Notice that by moving to the dual formulation, we have sacrificed the parametric nature of the primal formulation.
- This means that in the dual formulation, we need all the training data at test time.
- This is similar to nearest-neighbour classifiers, Parzen windows based density estimation, etc.
- However, SVMs require only a subset of the training data the so-called *support vectors*.
- So we get the best of both worlds!

Support Vectors

The classifier output can be written as

$$u(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$$

$$= \sum_{n=1}^N a_n t_n \underbrace{\phi(\mathbf{x}_n)^T \phi(\mathbf{x})}_{k(\mathbf{x}_n, \mathbf{x})} + b$$

- All data points x_n for which a_n = 0 have no role in determining the classifier's output.
- ► Therefore, we only need to store the training data points for which a_n > 0.
- ► These data points are called the *support vectors*.

$$y(\mathbf{x}) = \sum_{m \in S} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) + b$$

where $\ensuremath{\mathcal{S}}$ is the set of indices of the support vectors.

Determining b

► From the KKT conditions, we know that for any support vector, *i.e.* a_n > 0, we must have

$$t_n \left(\mathbf{w}^T \phi(\mathbf{x}_n) + b \right) = 1$$
$$\implies t_n \left(\sum_{m \in S} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) + b \right) = 1$$

• Multiplying both sides by t_n and using the fact that $t_n^2 = 1$, we obtain an estimate for b

$$b = t_n - \sum_{m \in S} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

 A better estimate for b can be obtained by averaging over all support vectors

$$b = \frac{1}{|\mathcal{S}|} \sum_{n \in \mathcal{S}} \left(t_n - \sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right)$$

Advanced Machine Learning

Nazar Khan

Kernels

- Linear kernels $k(\mathbf{x}, \mathbf{x}_0) = \mathbf{x}^T \mathbf{x}_0$.
- Polynomial kernels $k(\mathbf{x}, \mathbf{x}_0) = (1 + \mathbf{x}^T \mathbf{x}_0)^d$ for any d > 0.
 - ► Contains all polynomial terms up to degree *d*.

• Gaussian kernels
$$k(\mathbf{x}, \mathbf{x}_0) = \exp\left(\frac{-||\mathbf{x}-\mathbf{x}_0||^2}{2\sigma^2}\right)$$
 for $\sigma > 0$.

- Infinite dimensional feature space.
- https://youtu.be/XUj5JbQihlU?t=812

Summary

- Data may be linearly separable in a high dimensional feature space \u03c6, but not in the input space x.
- Classifiers can be learnt for this high dimensional feature space without actually computing $\phi(\mathbf{x})$.
- Kernel trick replaces the scalar product in the dual formulation.
- Kernel trick can be used in other ML approaches.
- Kernels can be applied to a large variety of objects (not just vectors).
- So far: linearly separable data. Next we discuss SVMs for non-separable data.

Linearly Non-Separable Case

- Assume data is linearly non-separable.
- We can still learn a linear decision boundary in φ-space corresponding to a non-linear one in x-space.
- However, such exact non-linear separation of training data can lead to over-fitting.
- It can be a good idea to allow some misclassifications of the training points.

Slack Variables

- ► This is achieved by replacing the hard margin constraints $t_n y_n \ge 1$ by soft margin constraints $t_n y_n + \xi_n \ge 1$ where $\xi_n \ge 0$.
- The addition of the slack variables ξ_n allows t_ny_n to be less than 1 and still satisfy the soft margin constraint.
- If hard constraint t_ny_n ≥ 1 is not being satisfied, we help by adding ξ_n in order to reach 1.
- ► ξ_n represents the minimum amount to be added to make $t_n y_n + \xi_n = 1$.

		Lagrange Multipliers	Dual	Kernel Trick	Soft Margin	
Slack V	ariables					

 $\xi_n = 0$ correctly classified either on or on the correct side of the margin

- $0<\xi_n<1$ correctly classified within the margin
 - $\xi_n = 1$ on the decision surface
 - $\xi_n > 1$ misclassified

Introduction Hard Margin Lagrange Multipliers Dual Kernel Trick Soft Margin

SVM with Soft Margin Costraints

- Goal: Maximise margin while softly penalising points that lie on the wrong side of the margin.
- Achieved via

$$\arg \min_{\mathbf{w}, b, \xi_1, \dots, \xi_N} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^N \xi_n$$

s.t. $t_n y_n + \xi_n \ge 1$ for $n = 1, \dots, N$
 $\xi_n \ge 0$ for $n = 1, \dots, N$

- Parameter C > 0 controls the trade-off between misclassifications and maximising the margin.
 - ► Large C ⇒ penalising slack ⇒ good training performance ⇒ over-fitting.
 - Small *C* allows misclassifications on training data.
 - So C is like an inverse-regularisation parameter.
- ► The sum ∑^N_{n=1} ξ_n is an upper-bound on the number of misclassifications. (Why?)

Soft Margin

Dual Formulation

- We have a constrained minimisation problem with inequality constraints.
- Lagrangian can be written as

$$L(\mathbf{w}, b, \mathbf{a}, \mu) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n$$

- $\sum_{n=1}^{N} a_n \{t_n y_n + \xi_n - 1\}$ - $\sum_{n=1}^{N} \mu_n \xi_n$
 $a_n \ge 0$
 $t_n y_n + \xi_n - 1 \ge 0$
 $a_n \{t_n y_n + \xi_n - 1\} = 0$
 $\mu_n \xi_n = 0$

where $a_n \ge 0$ are Lagrange multipliers for the N soft margin constraints and $\mu_n \ge 0$ are Lagrange multipliers for the N slack variable constraints.

Dual Formulation

► The 6*N* KKT conditions can be written as

$$a_n \ge 0$$

$$t_n y_n + \xi_n - 1 \ge 0$$

$$a_n \{t_n y_n + \xi_n - 1\} = 0$$

$$\mu_n \ge 0$$

$$\xi_n \ge 0$$

$$\mu_n \xi_n = 0$$

Soft Margin

Dual Formulation

Similar to the separable case, we can set

$$\mathbf{0} \equiv \frac{\partial L}{\partial \mathbf{w}} \implies \mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$
$$\mathbf{0} \equiv \frac{\partial L}{\partial b} \implies \sum_{n=1}^{N} a_n t_n = \mathbf{0}$$
$$\mathbf{0} \equiv \frac{\partial L}{\partial \xi_n} \implies a_n = C - \mu_n$$

to optimise out (eliminate)

- the original parameters w, b,
- the slack variables ξ_n, and
- Lagrange multipliers μ_n

Dual Formulation

This yields the dual formulation

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \underbrace{\phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m)}_{k(\mathbf{x}_n, \mathbf{x}_m)}$$

- The constraints that carry over are $a_n \ge 0$ and $\sum_{n=1}^{N} a_n t_n = 0$.
- Since $a_n = C \mu_n$ and $\mu_n \ge 0$, we must have $a_n \le C$.
- So the N + 1 constraints become

$$0 \le a_n \le C, \quad n = 1, ..., N$$
 (box constraints)
 $\sum_{n=1}^{N} a_n t_n = 0$

• Once again, we have a QP problem in *N* variables.

Dual Formulation

- After solving the QP problem for a*, we get a_n = 0 for some data points. These points play no role during predictions for arbitrary x.
- For the remaining points (*i.e.*, support vectors), we have 2 cases:
 - 1. $a_n < C \implies \mu_n > 0 \implies \xi_n = 0 \implies \mathbf{x}_n$ lies on (or beyond) margin.
 - 2. $a_n = C \implies \mu_n = 0 \implies \xi_n > 0$ which in turn yields 3 cases 2.1 $\xi_n < 1 \implies x_n$ lies within the margin but correctly classified. 2.2 $\xi_n = 1 \implies x_n$ lies on the decision surface. 2.3 $\xi_n > 1 \implies x_n$ is misclassified.
- A popular technique for SVM training is sequential minimal optimisation (SMO) which avoids quadratic programming.
- Scales between O(N) and $O(N^2)$.

Extensions

Multiclass SVMs

- An SVM is fundamentally a binary classifier.
- Can be trained for multiclass problems via
 - One-versus-rest approach. Leads to ambiguous classification regions, imbalanced datasets, differing output scales.
 - One-vs-one approach. Leads to ambiguous classification regions and slower training and testing.
- One-vs-rest approach is used more often.

Extensions

Extensions *Structured Outputs*

- Structured output variables have dependencies between each other.
 - ► Images, trees, DNA sequences, *etc*.
- Structural SVMs have been developed for such structured output spaces.
- Similar max-margin framework can be used.
- Tsochantaridis I, Hofmann T, Joachims T, Altun Y (2004) Support vector machine learning for interdependent and structured output spaces. In: International Conference on Machine Learning (ICML), pp 104–112

- Regression problems can be addressed by Support Vector Regression (SVR).
- Posterior probabilities are output by a *Relevance Vector* Machine (RVM).

- Mid-term Exam
 - Take-home quizzes.
 - Blue points in lecture slides.
 - Everything else in lecture slides.
 - Practical things you learned while completing the projects.