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10. Eigenvalues and Eigenvectors



Definition Computation Diagonalization

Eigenvalues and Eigenvectors
Definition

Content in this lecture applies only to square matrices.

I Recall that matrix-vector multiplication =⇒ linear
transformation.

I So every matrix-vector multiplication Mv transforms vector v.
I This transformation includes direction as well as scale.
I However, for a given M there are some nonzero vectors that

are only scaled. That is

Mv = λv (1)

where λ is the scaling factor.
I Such vectors are called eigenvectors of M and the

corresponding scales λ are called eigenvalues.
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Definition Computation Diagonalization

Eigenvalues and Eigenvectors
Definition

Cases when Mx (in gray) is only a scaled version of x (in blue).
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Definition Computation Diagonalization

Eigenvalues and Eigenvectors
History

I Derived from the German word eigen, meaning "own",
"peculiar to", "characteristic", or "individual".

I Every square matrix has its own particular vectors that do not
change direction after multiplication.
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Definition Computation Diagonalization

Eigenvalues and Eigenvectors
Uses

Applications in such diverse fields as
I computer graphics
I mechanical vibrations
I heat flow
I population dynamics
I quantum mechanics
I economics
I machine learning
I computer vision
I Google’s PageRank algorithm
I lots of other areas.
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Definition Computation Diagonalization

Eigenvalues and Eigenvectors
How to compute?

I If v is an eigenvector of M with corresponding eigenvalue λ,
then

Mv = λv =⇒ λv −Mv = 0 =⇒ (λI −M)v = 0

which implies that v is a null-vector of λI −M.
I Since v is constrained to be nonzero, λI −M must have a null

space (i.e., 0 determinant)

det(λI −M) = 0

which is called the characteristic equation of M. This equation
is used to find eigenvalues and eigenvectors.

I Compute characteristic equation for M =
[−1 3

2 0

]
.
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Definition Computation Diagonalization

Eigenvalues and Eigenvectors
How to compute?

I When the determinant is expanded, the characteristic equation
of M takes the form

λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn

which is called the characteristic polynomial of M.
I Since it is always of degree n, it can have maximum n distinct

roots.
I Therefore, an n × n matrix can have a maximum of n distinct

eigenvalues.
I An eigenvalue can sometimes be a complex number.
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Definition Computation Diagonalization

Examples

For M =

[
−1 3
2 0

]
,

characteristic equation is
∣∣∣∣λ+ 1 −3
−2 λ

∣∣∣∣ = 0

=⇒ (λ+ 1)λ− (−3)(−2) = 0
=⇒ λ2 + λ− 6 = 0 (L.H.S is called the characteristic polynomial)
=⇒ λ = 2 and λ = −3 are the 2 eigenvalues of M.
For eigval λ = −3, (λI −M)v = 0

=⇒
[
−3+ 1 −3
−2 −3

] [
v1
v2

]
=

[
0
0

]
=⇒

[
−2 −3
−2 −3

] [
v1
v2

]
=

[
0
0

]
=⇒ v2 = −2

3v1.

So the basis for the eigenspace corresponding to λ = −3 is the

vector v =

[
1
−2

3

]
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Definition Computation Diagonalization

Examples

For eigval λ = 2, (λI −M)v = 0

=⇒
[
2+ 1 −3
−2 2

] [
v1
v2

]
=

[
0
0

]
=⇒

[
3 −3
−2 2

] [
v1
v2

]
=

[
0
0

]
=⇒ v2 = v1.

So the basis for the eigenspace corresponding to λ = 2 is the vector

v =

[
1
1

]
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Definition Computation Diagonalization

Examples
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Definition Computation Diagonalization

Examples

Geometry of eigenvectors of the matrix M =

[
−1 3
2 0

]
.

I The eigenspace corresponding to λ = 2 is the line L1 through
the origin and the point (1, 1).

I The eigenspace corresponding to λ = 3 is the line L2 through
the origin and the point (−3

2 , 1).
I Multiplication by M maps each vector in L1 back into L1,

scaling it by a factor of 2.
I Similarly, each vector in L2 is mapped back into L2 after

scaling it by a factor of −3.
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Definition Computation Diagonalization

Examples

I For M =
[ 0 0 −2

1 2 1
1 0 3

]
, characteristic polynomial is

(λ− 1)(λ− 2)2 = 0. Verify.
I 2 is a root of the polynomial with multiplicity 2.
I Their will be 2 eigenvectors corresponding to eigenvalue 2.
I We can also say that the eigenspace corresponding to λ = 2

will be 2-dimensional. Find it.
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Definition Computation Diagonalization

Triangular Matrices

I Eigenvalues of any triangular matrix (lower, upper or diagonal)
are the entries on the main diagonal.

I Proof: Look at the characteristic polynomial of
[
a b c
0 d e
0 0 f

]
or any

other diagonal matrix. Complete the proof.
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Definition Computation Diagonalization

Similarity Transformation

I Take two n × n matrices A and P .
I Assume P to be invertible.
I Consider the transformation

A→ P−1AP

It is called a similarity transformation.
I If B = P−1AP , then A and B are said to be similar matrices.

Nazar Khan Linear Algebra



Definition Computation Diagonalization

Similarity Transformation

I Such transformations are important because they preserve
many properties of A. A and P−1AP have the same

I Determinant
I Invertibility
I Rank
I Nullity
I Trace
I Characteristic polynomial
I Eigenvalues
I Eigenspace dimension
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Definition Computation Diagonalization

Diagonalization
Definition

I We have seen that diagonal matrices are very convenient.
I Easily invertible.
I Eigenvalues are the diagonal entries themselves.
I Powers are easy.

For n × n matrices A and P where P is invertible, if
P−1AP turns out to be a diagonal matrix, then A is said
to be diagonalizable and P is said to diagonalize A.

I If A is similar to a diagonal matrix, then many properties of A
can be obtained through the more convenient diagonal matrix
P−1AP .
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Definition Computation Diagonalization

Diagonalization
Method

I Assume A is similar to a diagonal matrix D.
I Then P exists such that P−1AP = D =⇒ AP = PD =⇒

A[ p1 p2 ... pn ] = [ p1 p2 ... pn ]

[
d1

. . .
dn

]
=⇒ Api = dipi for

i = 1, 2, . . . , n.
I Therefore, the matrix P that diagonalizes A is made from the

n eigenvectors of A.
I Since P is invertible (by assumption), the n eigenvectors must

be linearly independent.
I Also, the diagonal matrix D is made from the corresponding

eigenvalues of A.
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Definition Computation Diagonalization

Diagonalization
Method

I Now assume A has n linearly independent eigenvectors.
I This implies that P made from those eigenvectors is invertible.
I This implies that A is diagonalizable.
I So we can state the following.

If A is an n × n matrix, the following statements are
equivalent.

1. A is diagonalizable.

2. A has n linearly independent eigenvectors.
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Definition Computation Diagonalization

Eigenvalues of Ak

Akx = Ak−1Ax = Ak−1λx = λAk−1x = λAk−2Ax = λAk−2λx =
λ2Ak−2x = · · · = λkx.

If λ is an eigenvlaue of A with corresponding eigenvector x,
then λk will be an eigenvlaue of Ak with the same correspond-
ing eigenvector x.
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Definition Computation Diagonalization

Computing Ak via diagonalization

P−1AP = D

=⇒ (P−1AP)2 = D2

=⇒ (P−1AP)(P−1AP) = D2

=⇒ P−1APP−1AP = D2

=⇒ P−1AIAP = D2

=⇒ P−1A2P = D2

=⇒ A2 = PD2P−1

More generally, for any positive integer k , Ak = PDkP−1.
Notice that computing Dk is much easier.
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Definition Computation Diagonalization

Example

We have already computed the eigen-decomposition for
M =

[ 0 0 −2
1 2 1
1 0 3

]
. Use it to compute A13.
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Definition Computation Diagonalization

Geometric and Algebraic Multiplicity

I Geometric multiplicity: Dimension of the eigenspace
corresponding to an eigenvalue.

I Algebraic multiplicity: Number of times an eigenvalue appears
as a solution of the characteristic polynomial.

I Algebraic multiplicity ≥ geometric multiplicity.

A square matrix is diagonalizable if and only if the geomet-
ric multiplicity of every eigenvalue is equal to the algebraic
multiplicity.
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