MA-310 Linear Algebra

Nazar Khan
PUCIT
2. Matrix Arithmetic

Matrices

- Rectangular arrays of numbers with m rows and n columns.
- If $m=n$, we have a square matrix of order n.
- Entries $a_{11}, a_{22}, \ldots, a_{n n}$ constitute the main diagonal.
- Transpose by swapping rows and columns.
- In matrix arithmetic
- size matters
- $A+B$ is valid only if dimensions are equal
- $A * B$ is valid only if dimensions match
- order matters $(A * B \neq B * A$ generally)

Matrix Multiplication

- Multiplication is valid if columns of first matrix are equal to rows of second.

- Multiplication is carried by taking the dot-product of row i of A with column j of B.

$$
A B=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 r} \\
a_{21} & a_{22} & \cdots & a_{2 r} \\
\vdots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \cdots & a_{i r} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m r}
\end{array}\right]\left[\begin{array}{cccccc}
b_{11} & b_{12} & \cdots & b_{1 j} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 j} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots & & \vdots \\
b_{r 1} & b_{r 2} & \cdots & b_{r j} & \cdots & b_{r n}
\end{array}\right]
$$

$$
(A B)_{i j}=a_{i 1} b_{j 1}+a_{i 2} b_{j 2}+\cdots+a_{i n} b_{j n}
$$

Matrix Multiplication

$$
\begin{gathered}
\underbrace{\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 6 & 0
\end{array}\right]}_{2 \times 3} \underbrace{\left[\begin{array}{cccc}
4 & 1 & 4 & 3 \\
0 & -1 & 3 & 1 \\
2 & 7 & 5 & 2
\end{array}\right]}_{3 \times 4}=\underbrace{\left[\begin{array}{llll}
\square & \square & \square & \square \\
\square & \square & 26 & \square \\
\hline & \boxed{\square} & \square
\end{array}\right.}_{2 \times 4} \\
(A B)_{23}=a_{21} b_{31}+a_{22} b_{32}+\cdots+a_{2 n} b_{3 n}=2 \cdot 4+6 \cdot 3+0 \cdot 5=26
\end{gathered}
$$

Fill the rest.

3 ways of looking at a matrix

- Set of rows
- Set of columns
- Set of blocks (sub-matrices)
$\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ \hline a_{21} & a_{22} & a_{23} & a_{24} \\ \hline a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right],\left[\begin{array}{l|l|l|l}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right],\left[\begin{array}{lll|l}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ \hline a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right]$
- Vector-matrix multiplication can be seen as a linear combination of matrix rows.
- Matrix-vector multiplication can be seen as a linear combination of matrix columns.
- Matrix-matrix multiplication can be seen as column-row expansion (sum of outer-products).

Matrix Form of a Linear System

Every linear system can be expressed in matrix vector form and vice versa.

The linear system

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+a_{14} x_{4}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+a_{24} x_{4}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+a_{34} x_{4}=b_{3}
\end{aligned}
$$

can also be written as $A \mathbf{x}=\mathbf{b}$

$$
\underbrace{\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]}_{\mathbf{x}}=\underbrace{\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]}_{\mathbf{b}}
$$

where A is called the coefficient matrix, x is the vector of unknowns

Trace

- There are some operations/concepts that are defined only for square matrices.
- Trace (sum of entries on the main diagonal)
- Determinant
- Inverse
- Identity

Matrix Arithmetic Properties

```
Assuming that the sizes of the matrices are such that the indicated operations can be performed, the following rules of matrix arithmetic are valid.
(a) \(A+B=B+A\)
[Commutative law for matrix addition]
(b) \(A+(B+C)=(A+B)+C\) [Associative law for matrix addition]
(c) \(A(B C)=(A B) C \quad\) [Associative law for matrix multiplication]
(d) \(A(B+C)=A B+A C \quad\) [Left distributive law]
(e) \(\quad(B+C) A=B A+C A \quad\) [Right distributive law]
(f) \(A(B-C)=A B-A C\)
(g) \((B-C) A=B A-C A\)
(h) \(a(B+C)=a B+a C\)
(i) \(a(B-C)=a B-a C\)
(j) \((a+b) C=a C+b C\)
(k) \((a-b) C=a C-b C\)
(l) \(a(b C)=(a b) C\)
(m) \(a(B C)=(a B) C=B(a C)\)
```


Matrix Multiplication

Be Carefu!!

- While most matrix arithmetic follows the rules of basic scalar arithmetic, there are some important exceptions.
- There is no such thing as matrix division!

Scalar	Matrix
$a b=b a$	$A B \neq B A$
$a b=a c \Longrightarrow b=c$	$A B=A C \nRightarrow B=C$
$a b=0 \Longrightarrow a=0$ and $/$ or $b=0$	$A B=0 \nRightarrow A=0$ or $B=0$
$a^{-1}=\frac{1}{a}$	$A^{-1} \neq \frac{1}{A}$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$	$(A+B)^{2} \neq A^{2}+2 A B+B^{2}$

Identity Matrix

- Identity matrix is a square, diagonal matrix containing only 1 s on the diagonal and 0s elsewhere.
- I_{n} denotes the $n \times n$ identity matrix.
- Plays the role that 1 plays in scalar arithmetic.
- $A I_{n}=A$ and $I_{n} A=A$.
- Reduced row-echelon form of a square $n \times n$ matrix is either I_{n} or contains a row of zeros.

Matrix Inverse

Content in this slide applies only to square matrices.

- If A is a square matrix and if there exists another square matrix B such that $A B=B A=I$, then A is invertible (or non-singular) and B is the inverse of A.
- $\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right]$ is an inverse of $\left[\begin{array}{cc}2 & -5 \\ -1 & 3\end{array}\right]$. Verify it.
- Any matrix with a column (or row) of zeros is not invertible. Why?
- If A and B are invertible matrices with the same size, then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$. Prove it.
- Similarly, $\left(A_{1} A_{2} A_{3} \ldots A_{n}\right)^{-1}=A_{n}^{-1} \ldots A_{2}^{-1} A_{1}^{-1}$.

Powers of a matrix

Content in this slide applies only to square matrices.

- $A^{0}=1$
- For any integer $n>0, A^{n}=\underbrace{A A \ldots A}_{n}$.
- Also, $A^{-n}=\underbrace{A^{-1} A^{-1} \ldots A^{-1}}_{n}$.
- $A^{r} A^{s}=A^{r+s}$.
- $\left(A^{r}\right)^{s}=A^{r s}$.
- For non-singular $A, k A$ is invertible for any nonzero scalar k, and $(k A)^{-1}=\frac{1}{k} A^{-1}$. Verify that their product yields I.

Properties of the Matrix Transpose

- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(A-B)^{T}=A^{T}-B^{T}$
- $(k A)^{T}=k A^{T}$
- $(A B)^{T}=B^{T} A^{T}$
- $\left(A_{1} A_{2} A_{3} \ldots A_{n}\right)^{T}=A_{n}^{T} \ldots A_{2}^{T} A_{1}^{T}$.
- $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$. Verify it.

Questions

- Exercise 1.3
- $7,8,11,13,17,25,27,28,30,35,36$, all true-false questions.

