MA-310 Linear Algebra

Nazar Khan

PUCIT

4. Diagonal and Triangular Matrices

Diagonal Matrices

Non-zero entries only on the main diagonal. Zero everywhere else.

$$
\left.\begin{array}{l}
D=\left[\begin{array}{cccc}
d_{11} & 0 & \ldots & 0 \\
0 & d_{22} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & d_{n n}
\end{array}\right], D^{-1}=\left[\begin{array}{ccc}
1 / d_{11} & 0 & \ldots \\
0 & 1 / d_{22} & \ldots
\end{array}\right) 0 \\
\vdots \\
\vdots \\
0 \\
0
\end{array}\right] \begin{gathered}
\\
D^{k}=\left[\begin{array}{cccc}
d_{11}^{k} & 0 & \ldots & 0 \\
0 & d_{22}^{k} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & d_{n n}^{k}
\end{array}\right], D^{-k}=\left[\begin{array}{cccc}
1 / d_{11}^{k} & 0 & \ldots & 0 \\
0 & 1 / d_{22}^{k} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & 1 / d_{n n}^{k}
\end{array}\right]
\end{gathered}
$$

Diagonal Matrices

Multiplication

Left multiplication by a diagonal matrix

$$
\begin{aligned}
{\left[\begin{array}{ccc}
d_{11} & 0 & 0 \\
0 & d_{22} & 0 \\
0 & 0 & d_{33}
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right] } & =\left[\begin{array}{llll}
d_{11} a_{11} & d_{11} a_{12} & d_{11} a_{13} & d_{11} a_{14} \\
d_{22} a_{21} & d_{22} a_{22} & d_{22} a_{23} & d_{22} a_{24} \\
d_{33} a_{31} & d_{33} a_{32} & d_{33} a_{33} & d_{33} a_{34}
\end{array}\right] \\
& =\left[\begin{array}{l}
d_{11} \mathbf{r}_{1} \\
d_{22} \mathbf{r}_{2} \\
d_{33} \mathbf{r}_{3}
\end{array}\right]
\end{aligned}
$$

Right multiplication by a diagonal matrix

$$
\begin{aligned}
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
a_{41} & a_{42} & a_{43}
\end{array}\right]\left[\begin{array}{ccc}
d_{11} & 0 & 0 \\
0 & d_{22} & 0 \\
0 & 0 & d_{33}
\end{array}\right] } & =\left[\begin{array}{lll}
d_{11} a_{11} & d_{22} a_{12} & d_{33} a_{13} \\
d_{11} a_{21} & d_{22} a_{22} & d_{33} a_{23} \\
d_{11} a_{31} & d_{22} a_{32} & d_{33} a_{33} \\
d_{11} a_{41} & d_{22} a_{42} & d_{33} a_{43}
\end{array}\right] \\
& =\left[\begin{array}{lll}
d_{11} \mathbf{c}_{1} & d_{22} \mathbf{c}_{2} & d_{33} \mathbf{c}_{3}
\end{array}\right]
\end{aligned}
$$

Triangular Matrices

- Taking transpose converts lower to upper and vice versa.
- A triangular matrix is invertible if and only if its diagonal entries are all nonzero.

Triangular Matrices

- Inverse of invertible lower triangular matrix is lower triangular.
- Inverse of invertible upper triangular matrix is upper triangular.
- Product of lower triangular matrices is lower triangular.
- Product of upper triangular matrices is upper triangular.

Symmetric Matrices

A square matrix is symmetric if $A=A^{T}$. That is $a_{i j}=a_{j i}$ for all values of i and j.

$$
\left[\begin{array}{cc}
7 & -3 \\
-3 & 5
\end{array}\right],\left[\begin{array}{ccc}
1 & 4 & 5 \\
4 & -3 & 0 \\
5 & 0 & 7
\end{array}\right],\left[\begin{array}{ccc}
d_{11} & 0 & 0 \\
0 & d_{22} & 0 \\
0 & 0 & d_{33}
\end{array}\right]
$$

If A and B are symmetric matrices with the same size, and if k is any scalar, then

1. A^{T} is symmetric.
2. $A+B$ and $A-B$ are symmetric.
3. $k A$ is symmetric.
4. $A B$ is not always symmetric. $A B$ is symmetric if and only if A and B commute $(A B=B A)$.
5. If A is invertible, the inverse A^{-1} is also symmetric.

$A A^{T}$ and $A^{T} A$

- Matrix products of the form $A A^{T}$ and $A^{T} A$ arise in a variety of applications.
- It is useful to get familiar with their properties.
- Let A be an $m \times n$ matrix. Then A^{T} is $n \times m$ and
- $A A^{T}$ is square $m \times m$.
- $A^{T} A$ is square $n \times n$.
- Both products are symmetric since
- $\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}$
- $\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$
- $A=\left[\begin{array}{ccc}1 & -2 & 4 \\ 3 & 0 & -5\end{array}\right]$. Verify that $A A^{T}$ and $A^{T} A$ are symmetric.
- If a square matrix A is invertible, then $A A^{T}$ and $A^{T} A$ are also invertible.

