MA-310 Linear Algebra

Nazar Khan
PUCIT
5. Matrix Transformations

Matrix Transformations

- Special class of functions that arise from matrix multiplication.
- These functions are called "matrix transformations".
- Fundamental in the study of linear algebra.
- Important applications in physics, engineering, social sciences, and various branches of mathematics.

Basis Vectors

- Vectors. Default representation as a column of numbers. Denoted via lower-case, bold letters. For example, $\mathbf{x}, \mathbf{v}, \mathbf{b}$.
- Basis vectors for \mathbb{R}^{n}

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \ldots, \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

- Called basis vectors because every vector $\mathbf{x} \in \mathbb{R}^{n}$ can be represented as a linear combination of these basis vectors.

$$
\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}
$$

Functions

Domain A

Codomain
B

Usually we have considered functions as mappings from $a \in \mathbb{R}$ to $b \in \mathbb{R}$.

Transformations

- A function that maps from \mathbb{R}^{n} to \mathbb{R}^{m} is usually called a transformation.
- Map vectors to vectors.
- Commonly denoted by the letter T.

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

- For $m=n$, the transformations are usually called operators on \mathbb{R}^{n}.
- Linear systems $A \mathbf{x}_{n \times 1}=\mathbf{b}_{m \times 1}$ can be viewed as transformations from \mathbb{R}^{n} to \mathbb{R}^{m}.

Linear systems as Transformations

$$
T_{A}: R^{n} \rightarrow R^{m}
$$

Represented as

- $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
- $\mathbf{b}=T_{A}(\mathbf{x})$
$-\mathrm{x} \xrightarrow{T_{A}} \mathbf{b}$.
Read as " T_{A} maps \mathbf{x} onto $\mathbf{b}^{\text {". }}$
Transformtion T_{A} is just "multiplication by matrix A^{\prime} ".

Zero and Identity

- The $0_{m \times n}$ matrix containing all zeros is the zero transformation from \mathbb{R}^{n} to \mathbb{R}^{m}.

$$
T_{0}(\mathbf{u})=\mathbf{0}
$$

- I_{n} is the identity operator from \mathbb{R}^{n} to \mathbb{R}^{n}.

$$
T_{I_{n}}(\mathbf{u})=\mathbf{u}
$$

Properties

- For every matrix A the matrix transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has the following properties for all vectors \mathbf{u} and \mathbf{v} and for every scalar k :

1. $T_{A}(0)=0$.
2. $T_{A}(k \mathbf{u})=k T_{A}(\mathbf{u})$. [Homogeneity property]
3. $T_{A}(\mathbf{u}+\mathbf{v})=T_{A}(\mathbf{u})+T_{A}(\mathbf{v})$. [Additivity property]
4. $T_{A}(\mathbf{u}-\mathbf{v})=T_{A}(\mathbf{u})-T_{A}(\mathbf{v})$.

- Properties 2 and 3 imply linearity. A transformation with both properties is a linear transformation.
- Therefore, matrix transformations are linear transformations.
- It follows from 2 and 3 that
$T_{A}\left(k_{1} \mathbf{u}_{1}+k_{2} \mathbf{u}_{2}+\cdots+k_{r} \mathbf{u}_{r}\right)=k_{1} T_{A}\left(\mathbf{u}_{1}\right)+k_{2} T_{A}\left(\mathbf{u}_{2}\right)+\cdots+k_{r} T_{A}\left(\mathbf{u}_{r}\right)$
which states that a matrix transformation maps a linear combination of vectors in \mathbb{R}^{n} into the corresponding linear combination of vectors in \mathbb{R}^{m}.

Vectors vs. Points

Since n-dimensional vectors can be viewed as points in \mathbb{R}^{n}, matrix transformations can be viewed as acting on vectors or points.

T_{A} maps vectors to vectors.

T_{A} maps points to points.

Which view to take depends on the problem.

Applications of linear algebra

Polynomial Interpolation

Applications of linear algebra

Approximate Integration

