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6. Determinants



Minors & Cofactors Det via EROs Properties Equivalent Statements

Determinants

Content in this lecture applies only to square matrices.

I Gauss studied some quantities that determine some properties
of a matrix.

I They are called determinants.
I For 2× 2 matrices det

[
a b
c d

]
=
∣∣ a b
c d

∣∣ = ad − bc .
I This lecture is about determinants of general n × n matrices.
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Minors, Cofactors and a Recursive Formula for Determinants

For n × n matrix A,
I Mij =minor of entry aij=determinant of the submatrix that

remains after the ith row and jth column are deleted from A.
I Cij = (−1)i+jMij is called the cofactor of entry aij .
I For any row i

Det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

which is recursive since Cij depends on the determinant of a
smaller (n − 1)× (n − 1) matrix.

Nazar Khan Linear Algebra



Minors & Cofactors Det via EROs Properties Equivalent Statements

Minors, Cofactors and a Recursive Formula for Determinants

I Also, for any column j

Det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj

I Each cofactor Cij can in turn be computed in multiple ways.
I Tip: Pick row (or column) with maximium zeros. This will

reduce computation.

Whichever row or column is picked for cofactor expansions,
the answer (det(A)) will be the same.

Historical note: An alternative method for computing determinants was
invented by the author of Alice’s Adventures in Wonderland. He was actually a
mathematician.
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Practice

Find determinants of the following matrices

 3 1 0
−2 −4 3
5 4 −2

 ,


1 0 0 −1
3 1 2 2
1 0 −2 1
2 0 0 1


Be smart in picking the row or column for cofactor expansion.
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When is Det(A) = 0?

1. If A has a row of zeros or a column of zeros, then det(A) = 0.
I Since cofactor expansion of all rows gives the same answer, let

us pick the row of all zeros.
I Let i be the index of the row of zeros.
I Then det(A) = 0Ci1 + 0Ci2 + · · ·+ 0Cin = 0.
I Similarly for column of zeros.

2. If A has two proportional rows or two proportional columns
then det(A) = 0.

I Proof to follow.
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Determinant of diagonal and triangular matrices

I Determinant of lower triangular matrix can be computed as∣∣∣∣∣∣∣∣
a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44

∣∣∣∣∣∣∣∣ =a11

∣∣∣∣∣∣
a22 0 0
a32 a33 0
a42 a43 a44

∣∣∣∣∣∣ = a11a22

∣∣∣∣a33 0
a43 a44

∣∣∣∣
=a11a22a33

∣∣a44
∣∣ = a11a22a33a44

I Same can be shown for upper triangular and diagonal matrices.

Determinant of diagonal and triangular matrices is equal
to product of diagonal entries.
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Determinants and EROs

ERO Effect on Determinant
Scale by k Scaled by k

Add multiple of a row to another No change
Swap two rows Multiplied by −1.
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Determinants via EROs

I This gives us an alternative method for computing
determinants.

1. Reduce to triangular form via EROs.
2. Take product of diagonal entries and the factors introduced

because of the EROs.
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Proportional rows/columns =⇒ det= 0
Proof

I Row-echelon form is always upper-triangular.
I If matrix has two proportional rows/columns, row-echelon form

will contain a row/column of zeros.
I So diagonal of row-echelon form will contain a 0.
I So determinant of row-echelon form will be 0.
I Since EROs can only scale the determinant, this means that

determinant of original matrix must be 0 as well.
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Properties

I Det(kA) = knDet(A).
I Det(A+ B) 6=Det(A)+Det(B).
I Det(EB) =Det(E )Det(B). (See 4 slides back.)
I Det(E1E2 . . .ErB) =Det(E1)Det(E2) . . .Det(Er )Det(B).
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Determinant and Invertibility

A is invertible if and only if det(A) 6= 0.
Proof: Let R be the RREF of A. Then R = E1E2 . . .ErA and so

Det(R) = Det(E1)Det(E2) . . .Det(Er )Det(A) (1)

A invertible =⇒ R = I =⇒ det(A) 6= 0 since L.H.S of (1) 6= 0
and det(Ei ) 6= 0 always.
Similarly, det(A) 6= 0 =⇒ det(R) 6= 0 =⇒ R does not have any
zero row =⇒ R = I .
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Equivalent Statements

I If A is an n × n matrix, then the following statements are
equivalent, that is, all true or all false.

1. A is invertible.
2. Ax = 0 has only the trivial solution.
3. The reduced row echelon form of A is In.
4. A is expressible as a product of elementary matrices.
5. Ax = b has exactly one solution for every n × 1 vector b. The

solution is x = A−1b.
6. det(A) 6= 0.
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Det(AB)

Det(AB) =Det(A)Det(B).
Proof: A is either invertible or not invertible.

A invertible =⇒ A = E1E2 . . .Er

=⇒ AB = E1E2 . . .ErB

=⇒ det(AB) = det(E1E2 . . .ErB)

= det(E1)det(E2) . . . det(Er )det(B)
= det(E1E2 . . .Er )det(B)
= det(A)det(B)

A not invertible =⇒ det(A) = 0 =⇒ det(A)det(B) = 0
A not invertible =⇒ AB not invertible

=⇒ det(AB) = 0

So Det(AB) =Det(A)Det(B) always.
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det(A−1)

For invertible A, det(A−1) = 1
det(A)

Proof: A invertible =⇒ AA−1 = I =⇒ det(AA−1) = 1 =⇒
det(A)det(A−1) = 1 =⇒ det(A−1) = 1

det(A) since det(A) 6= 0.
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Adjoint

I Let Cij be the cofactor of entry aij of n × n matrix A.
I Then the adjoint matrix is defined as

adj(A) =


C11 C12 . . . C1n
C21 C22 . . . C2n
...

...
. . .

...
Cn1 Cn2 . . . Cnn


T

I Notice the transpose.

I Show that adjoint of
[ 3 2 −1

1 6 3
2 −4 0

]
is
[ 12 4 12

6 2 −10
−16 16 16

]
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A Formula for Matrix Inverse

I Recall that for any row i

Det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

I If entries come from row i and cofactors come from row j 6= i ,
then the answer is always zero. Verify.

I Consider the product Aadj(A).
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A Formula for Matrix Inverse

I The blue highlighted row and column product is
I 0 for i 6= j , and
I det(A) for i = j .

I So

Aadj(A) =


det(A) 0 . . . 0

0 det(A) . . . 0
...

...
. . .

...
0 0 . . . det(A)

 = det(A)I

I Therefore, A
(

1
det(A)adj(A)

)
= I .

I This gives us a formula for matrix inversion.

If A is invertible, then A−1 = 1
det(A)adj(A).
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Cramer’s Rule

I If Ax = b is a system of n linear equations in n unknowns such
that det(A) 6= 0, then the system has a unique solution given
by

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, . . . , xn =

det(An)

det(A)
,

where matrix Aj is obtained by replacing the jth column of A
by b.

I Proof:
I Advantages

I No matrix inverse. Only determinants.
I Solve for one variable at a time.
I Easier for humans.

I Disadvantage
I Solve for one variable at a time.
I Slow for a computer.
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