MA-310 Linear Algebra

Nazar Khan
PUCIT
6. Determinants

Determinants

Content in this lecture applies only to square matrices.

- Gauss studied some quantities that determine some properties of a matrix.
- They are called determinants.
- For 2×2 matrices $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.
- This lecture is about determinants of general $n \times n$ matrices.

Minors, Cofactors and a Recursive Formula for Determinants

For $n \times n$ matrix A,

- $M_{i j}=$ minor of entry $a_{i j}=$ determinant of the submatrix that remains after the i th row and j th column are deleted from A.
- $C_{i j}=(-1)^{i+j} M_{i j}$ is called the cofactor of entry $a_{i j}$.
- For any row i

$$
\operatorname{Det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

which is recursive since $C_{i j}$ depends on the determinant of a smaller $(n-1) \times(n-1)$ matrix.

Minors, Cofactors and a Recursive Formula for Determinants

- Also, for any column j

$$
\operatorname{Det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
$$

- Each cofactor $C_{i j}$ can in turn be computed in multiple ways.
- Tip: Pick row (or column) with maximium zeros. This will reduce computation.

Whichever row or column is picked for cofactor expansions, the answer $(\operatorname{det}(A))$ will be the same.

Historical note: An alternative method for computing determinants was invented by the author of Alice's Adventures in Wonderland. He was actually a mathematician.

Practice

Find determinants of the following matrices

$$
\left[\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
3 & 1 & 2 & 2 \\
1 & 0 & -2 & 1 \\
2 & 0 & 0 & 1
\end{array}\right]
$$

Be smart in picking the row or column for cofactor expansion.

When is $\operatorname{Det}(A)=0$?

1. If A has a row of zeros or a column of zeros, then $\operatorname{det}(A)=0$.

- Since cofactor expansion of all rows gives the same answer, let us pick the row of all zeros.
- Let i be the index of the row of zeros.
- Then $\operatorname{det}(A)=0 C_{i 1}+0 C_{i 2}+\cdots+0 C_{i n}=0$.
- Similarly for column of zeros.

2. If A has two proportional rows or two proportional columns then $\operatorname{det}(A)=0$.

- Proof to follow.

Determinant of diagonal and triangular matrices

- Determinant of lower triangular matrix can be computed as

$$
\begin{aligned}
\left|\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 \\
a_{31} & a_{32} & a_{33} & 0 \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right| & =a_{11}\left|\begin{array}{ccc}
a_{22} & 0 & 0 \\
a_{32} & a_{33} & 0 \\
a_{42} & a_{43} & a_{44}
\end{array}\right|=a_{11} a_{22}\left|\begin{array}{cc}
a_{33} & 0 \\
a_{43} & a_{44}
\end{array}\right| \\
& =a_{11} a_{22} a_{33}\left|a_{44}\right|=a_{11} a_{22} a_{33} a_{44}
\end{aligned}
$$

- Same can be shown for upper triangular and diagonal matrices.

Determinant of diagonal and triangular matrices is equal to product of diagonal entries.

Determinants and EROs

ERO	Effect on Determinant
Scale by k	Scaled by k
Add multiple of a row to another	No change
Swap two rows	Multiplied by -1.

Relationship	Operation
$\begin{gathered} \left\|\begin{array}{rrr} k a_{11} & k a_{12} & k a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right\|=k\left\|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right\| \\ \operatorname{det}(B)=k \operatorname{det}(A) \end{gathered}$	In the matrix B the first row of A was multiplied by k.
$\begin{aligned} \left\|\begin{array}{lll} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{array}\right\| & =-\left\|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right\| \\ \operatorname{det}(B) & =-\operatorname{det}(A) \end{aligned}$	In the matrix B the first and second rows of A were interchanged.
$\begin{gathered} \left\|\begin{array}{ccc} a_{11}+k a_{21} & a_{12}+k a_{22} & a_{13}+k a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right\|=\left\|\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right\| \\ \operatorname{det}(B)=\operatorname{det}(A) \end{gathered}$	In the matrix B a multiple of the second row of A was added to the first row.

Determinants via EROs

- This gives us an alternative method for computing determinants.

1. Reduce to triangular form via EROs.
2. Take product of diagonal entries and the factors introduced because of the EROs.

$$
\begin{aligned}
& \operatorname{det}(A)=\left|\begin{array}{rrr}
0 & 1 & 5 \\
3 & -6 & 9 \\
2 & 6 & 1
\end{array}\right|=-\left|\begin{array}{rrr}
3 & -6 & 9 \\
0 & 1 & 5 \\
2 & 6 & 1
\end{array}\right| \\
& =-3\left|\begin{array}{rrr}
1 & -2 & 3 \\
0 & 1 & 5 \\
2 & 6 & 1
\end{array}\right| \\
& =-3\left|\begin{array}{rrr}
1 & -2 & 3 \\
0 & 1 & 5 \\
0 & 10 & -5
\end{array}\right| \\
& =-3\left|\begin{array}{rrr}
1 & -2 & 3 \\
0 & 1 & 5 \\
0 & 0 & -55
\end{array}\right| \\
& =(-3)(-55)\left|\begin{array}{rrr}
1 & -2 & 3 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right| \\
& =(-3)(-55)(1)=165 \\
& \text { The first and second rows of } \\
& A \text { were interchanged. } \\
& \text { A common factor of } 3 \text { from } \\
& \text { the first row was taken } \\
& \text { through the determinant sign. } \\
& -2 \text { times the first row was } \\
& \text { added to the third row. } \\
& \text { - } 10 \text { times the second row } \\
& \text { was added to the third row. } \\
& \text { A common factor of }-55 \\
& \text { from the last row was taken } \\
& \text { through the determinant sign. }
\end{aligned}
$$

Proportional rows/columns \Longrightarrow det $=0$

 Proof- Row-echelon form is always upper-triangular.
- If matrix has two proportional rows/columns, row-echelon form will contain a row/column of zeros.
- So diagonal of row-echelon form will contain a 0 .
- So determinant of row-echelon form will be 0 .
- Since EROs can only scale the determinant, this means that determinant of original matrix must be 0 as well.

Properties

- $\operatorname{Det}(k A)=k^{n} \operatorname{Det}(A)$.
- $\operatorname{Det}(A+B) \neq \operatorname{Det}(A)+\operatorname{Det}(B)$.
- $\operatorname{Det}(E B)=\operatorname{Det}(E) \operatorname{Det}(B)$. (See 4 slides back.)
- $\operatorname{Det}\left(E_{1} E_{2} \ldots E_{r} B\right)=\operatorname{Det}\left(E_{1}\right) \operatorname{Det}\left(E_{2}\right) \ldots \operatorname{Det}\left(E_{r}\right) \operatorname{Det}(B)$.

Determinant and Invertibility

A is invertible if and only if $\operatorname{det}(A) \neq 0$.
Proof: Let R be the RREF of A. Then $R=E_{1} E_{2} \ldots E_{r} A$ and so

$$
\begin{equation*}
\operatorname{Det}(R)=\operatorname{Det}\left(E_{1}\right) \operatorname{Det}\left(E_{2}\right) \ldots \operatorname{Det}\left(E_{r}\right) \operatorname{Det}(A) \tag{1}
\end{equation*}
$$

A invertible $\Longrightarrow R=I \Longrightarrow \operatorname{det}(A) \neq 0$ since L.H.S of $(1) \neq 0$ and $\operatorname{det}\left(E_{i}\right) \neq 0$ always.
Similarly, $\operatorname{det}(A) \neq 0 \Longrightarrow \operatorname{det}(R) \neq 0 \Longrightarrow R$ does not have any zero row $\Longrightarrow R=1$.

Equivalent Statements

- If A is an $n \times n$ matrix, then the following statements are equivalent, that is, all true or all false.

1. A is invertible.
2. $\mathbf{A x}=\mathbf{0}$ has only the trivial solution.
3. The reduced row echelon form of A is I_{n}.
4. A is expressible as a product of elementary matrices.
5. $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every $n \times 1$ vector \mathbf{b}. The solution is $\mathbf{x}=A^{-1} \mathbf{b}$.
6. $\operatorname{det}(A) \neq 0$.

$\operatorname{Det}(A B)$

$\operatorname{Det}(A B)=\operatorname{Det}(A) \operatorname{Det}(B)$.
Proof: A is either invertible or not invertible.
A invertible $\Longrightarrow A=E_{1} E_{2} \ldots E_{r}$

$$
\begin{aligned}
& \Longrightarrow A B=E_{1} E_{2} \ldots E_{r} B \\
& \Longrightarrow \operatorname{det}(A B)=\operatorname{det}\left(E_{1} E_{2} \ldots E_{r} B\right) \\
&=\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}\right) \ldots \operatorname{det}\left(E_{r}\right) \operatorname{det}(B) \\
&=\operatorname{det}\left(E_{1} E_{2} \ldots E_{r}\right) \operatorname{det}(B) \\
&=\operatorname{det}(A) \operatorname{det}(B)
\end{aligned}
$$

A not invertible $\Longrightarrow \operatorname{det}(A)=0 \Longrightarrow \operatorname{det}(A) \operatorname{det}(B)=0$
A not invertible $\Longrightarrow A B$ not invertible

$$
\Longrightarrow \operatorname{det}(A B)=0
$$

So $\operatorname{Det}(A B)=\operatorname{Det}(A) \operatorname{Det}(B)$ always.
$\operatorname{det}\left(A^{-1}\right)$
For invertible $A, \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$
Proof: A invertible $\Longrightarrow A A^{-1}=I \Longrightarrow \operatorname{det}\left(A A^{-1}\right)=1 \Longrightarrow$ $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1 \Longrightarrow \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$ since $\operatorname{det}(A) \neq 0$.

Adjoint

- Let $C_{i j}$ be the cofactor of entry $a_{i j}$ of $n \times n$ matrix A.
- Then the adjoint matrix is defined as

$$
\operatorname{adj}(A)=\left[\begin{array}{cccc}
C_{11} & C_{12} & \ldots & C_{1 n} \\
C_{21} & C_{22} & \ldots & C_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n 1} & C_{n 2} & \ldots & C_{n n}
\end{array}\right]^{T}
$$

- Notice the transpose.
- Show that adjoint of $\left[\begin{array}{ccc}3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0\end{array}\right]$ is $\left[\begin{array}{ccc}12 & 4 & 12 \\ 6 & 2 & -10 \\ -16 & 16 & 16\end{array}\right]$

A Formula for Matrix Inverse

- Recall that for any row i

$$
\operatorname{Det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

- If entries come from row i and cofactors come from row $j \neq i$, then the answer is always zero. Verify.
- Consider the product $\operatorname{Aadj}(A)$.

$$
A \operatorname{adj}(A)=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \ldots & a_{i n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{cccccc}
C_{11} & C_{21} & \ldots & C_{j 1} & \ldots & C_{n 1} \\
C_{12} & C_{22} & \ldots & C_{j 2} & \ldots & C_{n 2} \\
\vdots & \vdots & & \vdots & & \vdots \\
C_{1 n} & C_{2 n} & \ldots & C_{j n} & \ldots & C_{n n}
\end{array}\right]
$$

A Formula for Matrix Inverse

- The blue highlighted row and column product is
- 0 for $i \neq j$, and
- $\operatorname{det}(A)$ for $i=j$.
- So

$$
\operatorname{Aadj}(A)=\left[\begin{array}{cccc}
\operatorname{det}(A) & 0 & \ldots & 0 \\
0 & \operatorname{det}(A) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \operatorname{det}(A)
\end{array}\right]=\operatorname{det}(A) /
$$

- Therefore, $A\left(\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)\right)=1$.
- This gives us a formula for matrix inversion.

If A is invertible, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.

Cramer's Rule

- If $A \mathbf{x}=\mathbf{b}$ is a system of n linear equations in n unknowns such that $\operatorname{det}(A) \neq 0$, then the system has a unique solution given by

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \ldots, x_{n}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)}
$$

where matrix A_{j} is obtained by replacing the j th column of A by b .

- Proof:
- Advantages
- No matrix inverse. Only determinants.
- Solve for one variable at a time.
- Easier for humans.
- Disadvantage
- Solve for one variable at a time.
- Slow for a computer.

