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Vectors

Vectors

v

Vectors in R” are n—tuples. Ordered sets of n numbers.

v

Vectors in R? and R3 are called geometric vectors.

v

They can be generalized to vectors in R”".

v

Applications of vectors

Digital color images (x,y,r, g, b).

Experimental measurements.

Electrical circuits.

... practically anything can be modelled using vectors.
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Vectors

Operations on vectors

If u,v, and w are vectors in R", and if kK and m are scalars, then:
u+v=v+u

(u+v)+w=u+(v+w)

u+0=0+u=u

u+(—u)=0

k(u +v) = ku + kv

(k+ m)u = ku+ mu

k(mu) = (km)u

lu=u

N e @

A linear combination of vectors can be written as
W = kivi + kovo + - - + kyv,

where the scalars ki, ko, ..., k, are the coefficents of the linear
combination.
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Distance in R"

Norm

» The length or magnitude of a vector is called its norm.

Ivil = /2 + B+ + 2
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Distance in R"

Unit Vector

v

A vector of unit norm (length=1) is called a unit vector.

v

Useful when only direction is important.

v

Any (non-zero) vector can be normalized to form a unit vector

in the same direction 1

= —v
v

Directions of coordinate axes in a rectangular coordinate
system are called the standard unit vectors.

u

v

R? [ i=(1,0) and j=(0,1)

R3 | i=(1,0,0), j=(0,1,0) and k = (0,0,1)

R" | e; = (1,0,0,...), & = (0,1,0,...),...,e, = (0,0, . ..
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Distance in R"

Distance

» For u,v € R", distance can be defined as

d(u,v) = |lu—v| = \/(ul —v1)?2+ (2 — )%+ + (up — vp)?
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Distance in R"

Dot Product

u-v=|ul|v|]|cosd = urvi + upvo + - - - + upv,

u v ) J

0:cosl< u-v >
[[ullf[v]]

>

Dot product enables computing angles between vectors in R".

Notice that v - v = ||v||?. Verify this.
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Distance in R"

Properties of Dot Product

If u,v, and w are vectors in R”, and if k is a scalar, then:
1. u-v=v-u [Symmetry property]
2. u-(v+w)=u-v+u-w [Distributive property]
3. k(u-v) = (ku) - v [Homogeneity property]
4. v-v>0andv-v=0if and only if v = 0 [Positivity
property]
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Distance in R"

Matrix Multiplication via Dot Products

> |If the row vectors of A are ry,r,...,r, and the column
vectors of B are c1,¢cp, - ,Cy,, then the matrix product AB

can be expressed as

rp-Cp fle@ ooo rp - Cp

ro-Cp rb-C ... ro-Cp
AB = :

rm-C1 rm:-C ... Iy, -Cph
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Orthogonality

Orthogonality

In R? and R3, vectors with an angle of 7 are called
perpendicular vectors.

The generalization of this concept in R” is orthogonality.

If the angle between two vectors in R" is 7, they are said
to be orthogonal vectors.

Orthogonality is denoted by the symbol .

u-v=0 = u Ll v. Why?

\.

So the purely geometric concept of orthogonality can be
captured by the purely algebraic concept of dot product.

Are standard unit vectors in R" orthogonal?
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Orthogonality

Lines and Planes

» A line in R? is determined uniquely by its slope and one of its
points.

» A plane in R3 is determined uniquely by its inclination and one
of its points.

oY Lz

S P(x )
Ly

Pylocg v,

N,
N

o la,b)

» Both can be represented algebraically as n- PoP = 0. That is,
if point P lies on the line/plane, it must satisfy this equation.

» These are called the point-normal equations of lines/planes.
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Orthogonality

Lines and Planes

» If a and b are constants that are not both zero, then an
equation of the form ax + by 4 ¢ = 0 represents a line in R2
with normal n = (a, b).

» If a, b, and ¢ are constants that are not all zero, then an
equation of the form ax + by + cz + d = 0 represents a plane
in R3 with normal n = (a, b, c).
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Orthogonality

Orthogonal Projections

Q W, a Q a W, w, Q a

v

Given any two vectors u and a, it is always possible to
decompose u as
u=wj;+wp

where wy is parallel to a and wy L a.

v

Setting wy = ka, we get

u.a:(ka+w2)'a:ka-a+(W2'a):k”a||2

v

This yields k = %.

|
Therefore, wi = proj,u = Hl;ITza and wy = u — wj.

v
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Orthogonality

Orthogonal Projections

> Show that ||w;|| = ||proj,ul| = '— = ||ul|| cos 4.

» Show that for u L v, ||u+v|? = Hu”2 + |Iv||?
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Cross Product

Cross Product

v

Only defined for R3.

» u X v is orthogonal to both u and v.

> |lu x v|| represents the area of the parallelogram formed by u
and v.
> |ju X v x w|| represents the area of the parallelepiped formed

by u,v and w.
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