MA-310 Linear Algebra

Nazar Khan

PUCIT

7. Vector Spaces

Vectors

- ▶ Vectors in \mathbb{R}^n are *n*-tuples. Ordered sets of *n* numbers.
- Vectors in \mathbb{R}^2 and \mathbb{R}^3 are called *geometric vectors*.
- They can be generalized to vectors in \mathbb{R}^n .
- Applications of vectors
 - Digital color images (x, y, r, g, b).
 - Experimental measurements.
 - Electrical circuits.
 - ... practically anything can be modelled using vectors.

Operations on vectors

If \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k and m are scalars, then:

1.
$$u + v = v + u$$

2. $(u + v) + w = u + (v + w)$
3. $u + 0 = 0 + u = u$
4. $u + (-u) = 0$
5. $k(u + v) = ku + kv$
6. $(k + m)u = ku + mu$
7. $k(mu) = (km)u$
8. $1u = u$

A linear combination of vectors can be written as

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r$$

where the scalars k_1, k_2, \ldots, k_r are the *coefficents* of the linear combination.

Nazar Khan

Distance in \mathbb{R}^n

Norm

► The *length* or *magnitude* of a vector is called its *norm*.

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Unit Vector

- ► A vector of unit norm (length=1) is called a *unit vector*.
- Useful when only direction is important.
- Any (non-zero) vector can be *normalized* to form a unit vector in the same direction

$$\mathbf{u} = \frac{1}{\|\mathbf{v}\|}\mathbf{v}$$

Directions of coordinate axes in a rectangular coordinate system are called the *standard unit vectors*.

\mathbb{R}^2	i = (1, 0) and $j = (0, 1)$
\mathbb{R}^3	i = (1, 0, 0), j = (0, 1, 0) and $k = (0, 0, 1)$
\mathbb{R}^{n}	$e_1 = (1, 0, 0, \dots), e_2 = (0, 1, 0, \dots), \dots, e_n = (0, 0, \dots, 1)$

Distance

▶ For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, *distance* can be defined as

$$d(\mathbf{u},\mathbf{v}) = \|\mathbf{u}-\mathbf{v}\| = \sqrt{(u_1-v_1)^2 + (u_2-v_2)^2 + \cdots + (u_n-v_n)^2}$$

Dot Product

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

$$\boldsymbol{\theta} = \cos^{-1}\left(\frac{\mathbf{u}\cdot\mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}\right)$$

Dot product enables computing angles between vectors in \mathbb{R}^n .

Notice that $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$. Verify this.

Properties of Dot Product

If \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

1.
$$u \cdot v = v \cdot u$$
 [Symmetry property]

2.
$$u \cdot (v + w) = u \cdot v + u \cdot w$$
 [Distributive property]

3. $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$ [Homogeneity property]

4. $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$ [Positivity property]

Vectors

Matrix Multiplication via Dot Products

► If the row vectors of A are r₁, r₂,..., r_m and the column vectors of B are c₁, c₂, ..., c_n, then the matrix product AB can be expressed as

$$AB = \begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{c}_1 & \mathbf{r}_1 \cdot \mathbf{c}_2 & \dots & \mathbf{r}_1 \cdot \mathbf{c}_n \\ \mathbf{r}_2 \cdot \mathbf{c}_1 & \mathbf{r}_2 \cdot \mathbf{c}_2 & \dots & \mathbf{r}_2 \cdot \mathbf{c}_n \\ \vdots & \vdots & & \vdots \\ \mathbf{r}_m \cdot \mathbf{c}_1 & \mathbf{r}_m \cdot \mathbf{c}_2 & \dots & \mathbf{r}_m \cdot \mathbf{c}_n \end{bmatrix}$$

Orthogonality

- ▶ In \mathbb{R}^2 and \mathbb{R}^3 , vectors with an angle of $\frac{\pi}{2}$ are called *perpendicular* vectors.
- The generalization of this concept in \mathbb{R}^n is *orthogonality*.

If the angle between two vectors in \mathbb{R}^n is $\frac{\pi}{2}$, they are said to be *orthogonal vectors*.

• Orthogonality is denoted by the symbol \perp .

 $\mathbf{u} \cdot \mathbf{v} = 0 \implies \mathbf{u} \perp \mathbf{v}$. Why?

- So the purely geometric concept of orthogonality can be captured by the purely algebraic concept of dot product.
- Are standard unit vectors in \mathbb{R}^n orthogonal?

Lines and Planes

- ► A line in ℝ² is determined uniquely by its slope and one of its points.
- \blacktriangleright A plane in \mathbb{R}^3 is determined uniquely by its inclination and one of its points.

- ▶ Both can be represented algebraically as $\mathbf{n} \cdot P_0 P = 0$. That is, if point *P* lies on the line/plane, it must satisfy this equation.
- ► These are called the *point-normal* equations of lines/planes.

Lines and Planes

- If a and b are constants that are not both zero, then an equation of the form ax + by + c = 0 represents a line in ℝ² with normal n = (a, b).
- If a, b, and c are constants that are not all zero, then an equation of the form ax + by + cz + d = 0 represents a plane in ℝ³ with normal n = (a, b, c).

Orthogonal Projections

► Given any two vectors u and a, it is always possible to decompose u as

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$$

where \mathbf{w}_1 is parallel to \mathbf{a} and $\mathbf{w}_2 \perp \mathbf{a}$.

$$\mathbf{u} \cdot \mathbf{a} = (k\mathbf{a} + \mathbf{w}_2) \cdot \mathbf{a} = k\mathbf{a} \cdot \mathbf{a} + (\mathbf{w}_2 \cdot \mathbf{a}) = k \|\mathbf{a}\|^2$$

Orthogonal Projections

- ▶ Show that $\|\mathbf{w}_1\| = \|\operatorname{proj}_{\mathbf{a}}\mathbf{u}\| = \frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|} = \|\mathbf{u}\| |\cos \theta|.$
- \blacktriangleright Show that for $\mathbf{u}\perp\mathbf{v},\,\|\mathbf{u}+\mathbf{v}\|^2=\|\mathbf{u}\|^2+\|\mathbf{v}\|^2$

Cross Product

- Only defined for \mathbb{R}^3 .
- $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} .
- $\blacktriangleright ~ \| u \times v \|$ represents the area of the parallelogram formed by u and v.
- ▶ $\|\mathbf{u} \times \mathbf{v} \times \mathbf{w}\|$ represents the area of the parallelepiped formed by \mathbf{u}, \mathbf{v} and \mathbf{w} .