MA-310 Linear Algebra

Nazar Khan

PUCIT

7. Vector Spaces

Vectors

- Vectors in \mathbb{R}^{n} are n-tuples. Ordered sets of n numbers.
- Vectors in \mathbb{R}^{2} and \mathbb{R}^{3} are called geometric vectors.
- They can be generalized to vectors in \mathbb{R}^{n}.
- Applications of vectors
- Digital color images (x, y, r, g, b).
- Experimental measurements.
- Electrical circuits.
- ... practically anything can be modelled using vectors.

Operations on vectors

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in \mathbb{R}^{n}, and if k and m are scalars, then:

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
2. $(\mathbf{u}+\mathbf{v})+w=\mathbf{u}+(\mathbf{v}+w)$
3. $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
4. $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
5. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
6. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
7. $k(m \mathbf{u})=(k m) \mathbf{u}$
8. $\mathbf{1 u}=\mathbf{u}$

A linear combination of vectors can be written as

$$
\mathbf{w}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{r} \mathbf{v}_{r}
$$

where the scalars $k_{1}, k_{2}, \ldots, k_{r}$ are the coefficents of the linear combination.

Norm

- The length or magnitude of a vector is called its norm.

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

Unit Vector

- A vector of unit norm (length=1) is called a unit vector.
- Useful when only direction is important.
- Any (non-zero) vector can be normalized to form a unit vector in the same direction

$$
\mathbf{u}=\frac{1}{\|\mathbf{v}\|} \mathbf{v}
$$

- Directions of coordinate axes in a rectangular coordinate system are called the standard unit vectors.

\mathbb{R}^{2}	$\mathbf{i}=(1,0)$ and $\mathbf{j}=(0,1)$
\mathbb{R}^{3}	$\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0)$ and $\mathbf{k}=(0,0,1)$
\mathbb{R}^{n}	$\mathbf{e}_{1}=(1,0,0, \ldots), \mathbf{e}_{2}=(0,1,0, \ldots), \ldots, \mathbf{e}_{n}=(0,0, \ldots, 1)$

Distance

- For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$, distance can be defined as

$$
d(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\cdots+\left(u_{n}-v_{n}\right)^{2}}
$$

Dot Product

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Dot product enables computing angles between vectors in \mathbb{R}^{n}.

Notice that $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$. Verify this.

Properties of Dot Product

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in \mathbb{R}^{n}, and if k is a scalar, then:

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$ [Symmetry property]
2. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$ [Distributive property]
3. $k(\mathbf{u} \cdot \mathbf{v})=(k \mathbf{u}) \cdot \mathbf{v}$ [Homogeneity property]
4. $\mathbf{v} \cdot \mathbf{v} \geq 0$ and $\mathbf{v} \cdot \mathbf{v}=0$ if and only if $\mathbf{v}=\mathbf{0}$ [Positivity property]

Matrix Multiplication via Dot Products

- If the row vectors of A are $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{m}$ and the column vectors of B are $\mathbf{c}_{1}, \mathbf{c}_{2}, \cdots, \mathbf{c}_{n}$, then the matrix product $A B$ can be expressed as

$$
A B=\left[\begin{array}{cccc}
\mathbf{r}_{1} \cdot \mathbf{c}_{1} & \mathbf{r}_{1} \cdot \mathbf{c}_{2} & \ldots & \mathbf{r}_{1} \cdot \mathbf{c}_{n} \\
\mathbf{r}_{2} \cdot \mathbf{c}_{1} & \mathbf{r}_{2} \cdot \mathbf{c}_{2} & \ldots & \mathbf{r}_{2} \cdot \mathbf{c}_{n} \\
\vdots & \vdots & & \vdots \\
\mathbf{r}_{m} \cdot \mathbf{c}_{1} & \mathbf{r}_{m} \cdot \mathbf{c}_{2} & \ldots & \mathbf{r}_{m} \cdot \mathbf{c}_{n}
\end{array}\right]
$$

Orthogonality

- In \mathbb{R}^{2} and \mathbb{R}^{3}, vectors with an angle of $\frac{\pi}{2}$ are called perpendicular vectors.
- The generalization of this concept in \mathbb{R}^{n} is orthogonality.

If the angle between two vectors in \mathbb{R}^{n} is $\frac{\pi}{2}$, they are said to be orthogonal vectors.

- Orthogonality is denoted by the symbol \perp.

$$
\mathbf{u} \cdot \mathbf{v}=0 \Longrightarrow \mathbf{u} \perp \mathbf{v} . \text { Why? }
$$

- So the purely geometric concept of orthogonality can be captured by the purely algebraic concept of dot product.
- Are standard unit vectors in \mathbb{R}^{n} orthogonal?

Lines and Planes

- A line in \mathbb{R}^{2} is determined uniquely by its slope and one of its points.
- A plane in \mathbb{R}^{3} is determined uniquely by its inclination and one of its points.

- Both can be represented algebraically as $\mathbf{n} \cdot P_{0} P=0$. That is, if point P lies on the line/plane, it must satisfy this equation.
- These are called the point-normal equations of lines/planes.

Lines and Planes

- If a and b are constants that are not both zero, then an equation of the form $a x+b y+c=0$ represents a line in \mathbb{R}^{2} with normal $\mathbf{n}=(a, b)$.
- If a, b, and c are constants that are not all zero, then an equation of the form $a x+b y+c z+d=0$ represents a plane in \mathbb{R}^{3} with normal $\mathbf{n}=(a, b, c)$.

Orthogonal Projections

- Given any two vectors \mathbf{u} and \mathbf{a}, it is always possible to decompose \mathbf{u} as

$$
\mathbf{u}=\mathbf{w}_{1}+\mathbf{w}_{2}
$$

where \mathbf{w}_{1} is parallel to a and $\mathbf{w}_{2} \perp \mathbf{a}$.

- Setting $\mathbf{w}_{1}=k \mathbf{a}$, we get

$$
\mathbf{u} \cdot \mathbf{a}=\left(k \mathbf{a}+\mathbf{w}_{2}\right) \cdot \mathbf{a}=k \mathbf{a} \cdot \mathbf{a}+\left(\mathbf{w}_{2} \cdot \mathbf{a}\right)=k\|\mathbf{a}\|^{2}
$$

- This yields $k=\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}}$.
- Therefore, $\mathbf{w}_{1}=\operatorname{proj}_{\mathbf{a}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}$ and $\mathbf{w}_{2}=\mathbf{u}-\mathbf{w}_{1}$.

Orthogonal Projections

- Show that $\left\|\mathbf{w}_{1}\right\|=\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{u}\right\|=\frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|}=\|\mathbf{u}\||\cos \theta|$.
- Show that for $\mathbf{u} \perp \mathbf{v},\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$

Cross Product

- Only defined for \mathbb{R}^{3}.
- $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}.
- $\|\mathbf{u} \times \mathbf{v}\|$ represents the area of the parallelogram formed by \mathbf{u} and \mathbf{v}.
- $\|\mathbf{u} \times \mathbf{v} \times \mathbf{w}\|$ represents the area of the parallelepiped formed by \mathbf{u}, \mathbf{v} and \mathbf{w}.

