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Automatic Differentiation Forward Reverse AD in Python

Automatic Differentiation (AD)

I Set of techniques to numerically evaluate the derivative of a function
specified by a computer program.

I Analytic or symbolic differentiation evaluates the derivative of a function
specified by a math expression.

I Also called algorithmic differentiation or computational differentiation.
I Backpropagation is a special case of AD.

Modern machine learning frameworks (TensorFlow, Theano, PyTorch)
employ AD. The programmer only needs to implement the loss function.
Derivatives are handled automatically!
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Types of AD

I AD is just unrolling of the chain rule.
I Can be unrolled in two ways,
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2. Reverse:
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I The idea is to accumulate required derivatives.
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Forward Accumulation AD

I Consider the function

z = f (x1, x2) = x1x2 + sin x1

= w1w2 + sinw1

= w3 + w4 = w5

I Consider derivatives with respect to x1. Let ẇi = ∂wi
∂x .

I For computing ∂z
∂x1

, we first compute the seed values
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∂x1

∂x1
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∂x2
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= 0

I These seed values can be propagated using the chain rule.
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Forward Accumulation AD

Operations to compute value Operations to compute derivative
w1 = x1 ẇ1 = 1 (seed)
w2 = x2 ẇ2 = 0 (seed)
w3 = w1 · w2 ẇ3 = w2 · ẇ1 + w1 · ẇ2
w4 = sinw1 ẇ4 = cosw1 · ẇ1
w5 = w3 + w4 ẇ5 = ẇ3 + ẇ4
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Forward Accumulation AD

I For computing ∂z
∂x2

, propagate again with seed values ẇ1 = 0 and ẇ2 = 1.
I Number of forward sweeps is equal to number of inputs.
I So forward AD is efficient when output size is much larger than input size.
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Reverse Accumulation AD

I Fix the dependent variable and compute the derivative w.r.t each
sub-expression recursively.
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I Define the adjoint w̄i = ∂y
∂wi

as the derivative w.r.t sub-expression wi .

I Notice the similarity with δj = ∂L
∂aj

in back-propagation.
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Reverse Accumulation AD

Operations to compute value Operations to compute derivative
z5 = w5 w̄5 = 1 (seed)
w5 = w3 + w4 w̄4 = w̄5
w5 = w3 + w4 w̄3 = w̄5
w3 = w1 · w2 w̄2 = w̄3 · w1
w4 = sinw1 and w3 = w1 · w2 w̄1 = w̄3 · w2 + w̄4 · cosw1
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Reverse Accumulation AD

I Number of reverse sweeps is equal to number of outputs.
I So reverse AD is efficient when input size is much larger than output size.

This is usually the case for classification problems.
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AD in Python

I A Python package called Autograd implements reverse mode automatic
differentiation.

I Elementary operations such as +, sin, xk etc. are overloaded by also
computing their derivates 1, cos, kx etc..

I If required, user-defined complex functions and their derivative
implementations can be registered with Autograd.
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Logistic Regression via Automatic Differentiation
Binary classifier with no hidden layer

Just a perceptron with logistic sigmoid activation func-
tion. Models probability of class 1 instead of decision.

y = p(C1|x) = σ(wTx)

1− y = p(C2|x) = 1− p(C1|x)

�0
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��

�
�

Binary cross-entropy loss

L(w) = −
N∑

n=1

tn ln yn + (1− tn) ln (1− yn)

What is ln(0)? ln(1)?
Plot ln(y) for y > 0?
Plot ln(y) for 0 < y ≤ 1?
When is L(w) = 0?
Can L(w) be negative?
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Logistic Regression via Automatic Differentiation
Binary classifier with no hidden layer

import pylab
import sklearn.datasets
import autograd.numpy as np
from autograd import grad

# Generate the data
train_X, train_y = sklearn.datasets.make_moons(500, noise=0.1)

# Define the activation, prediction and loss functions for Logistic Regression
def activation(x):

return 0.5*(np.tanh(x) + 1)

def predict(weights, inputs):
return activation(np.dot(inputs, weights))

def loss(weights):
preds = predict(weights, train_X)
label_probabilities = np.log(preds) * train_y + np.log(1 - preds) * (1 - train_y)
return -np.sum(label_probabilities)

# Compute the gradient of the loss function
gradient_loss = grad(loss)

# Set the initial weights
weights = np.array([1.0, 1.0])

# Steepest Descent

Nazar Khan Deep Learning



Automatic Differentiation Forward Reverse AD in Python

Logistic Regression via Automatic Differentiation
Binary classifier with no hidden layer

loss_values = []
learning_rate = 0.001
for i in range(100):

loss_values.append(loss(weights))
step = gradient_loss(weights)
weights -= step * learning_rate

# Plot the decision boundary
x_min, x_max = train_X[:, 0].min() - 0.5, train_X[:, 0].max() + 0.5
y_min, y_max = train_X[:, 1].min() - 0.5, train_X[:, 1].max() + 0.5
x_mesh, y_mesh = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))
Z = predict(weights, np.c_[x_mesh.ravel(), y_mesh.ravel()])
Z = Z.reshape(x_mesh.shape)
cs = pylab.contourf(x_mesh, y_mesh, Z, cmap=pylab.cm.Spectral)
pylab.scatter(train_X[:, 0], train_X[:, 1], c=train_y, cmap=pylab.cm.Spectral)
pylab.colorbar(cs)

# Plot the loss over each step
pylab.figure()
pylab.plot(loss_values)
pylab.xlabel("Steps")
pylab.ylabel("Loss")
pylab.show()
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