
CS-568 Deep Learning

Nazar Khan

PUCIT

Automatic Differentiation

Automatic Differentiation Forward Reverse AD in Python

Automatic Differentiation (AD)

I Set of techniques to numerically evaluate the derivative of a function
specified by a computer program.

I Analytic or symbolic differentiation evaluates the derivative of a function
specified by a math expression.

I Also called algorithmic differentiation or computational differentiation.
I Backpropagation is a special case of AD.

Modern machine learning frameworks (TensorFlow, Theano, PyTorch)
employ AD. The programmer only needs to implement the loss function.
Derivatives are handled automatically!

Nazar Khan Deep Learning

Automatic Differentiation Forward Reverse AD in Python

Types of AD

I AD is just unrolling of the chain rule.
I Can be unrolled in two ways,

1. Forward:

∂y

∂x
=

∂y

∂wn−1

∂wn−1

∂x
=

∂y

∂wn−1

(
∂wn−1

∂wn−2

∂wn−2

∂x

)
=

∂y

∂wn−1

(
∂wn−1

∂wn−2

(
∂wn−2

∂wn−3

∂wn−3

∂x

))
= · · ·

2. Reverse:

∂y

∂x
=

∂y

∂w1

∂w1

∂x
=

(
∂y

∂w2

∂w2

∂w1

)
∂w1

∂x

=

((
∂y

∂w3

∂w3

∂w2

)
∂w2

∂w1

)
∂w1

∂x
= · · ·

I The idea is to accumulate required derivatives.

Nazar Khan Deep Learning

Automatic Differentiation Forward Reverse AD in Python

Forward Accumulation AD

I Consider the function

z = f (x1, x2) = x1x2 + sin x1

= w1w2 + sinw1

= w3 + w4 = w5

I Consider derivatives with respect to x1. Let ẇi = ∂wi
∂x .

I For computing ∂z
∂x1

, we first compute the seed values

ẇ1 =
∂x1

∂x1
= 1

ẇ2 =
∂x2

∂x1
= 0

I These seed values can be propagated using the chain rule.

Nazar Khan Deep Learning

Automatic Differentiation Forward Reverse AD in Python

Forward Accumulation AD

Operations to compute value Operations to compute derivative
w1 = x1 ẇ1 = 1 (seed)
w2 = x2 ẇ2 = 0 (seed)
w3 = w1 · w2 ẇ3 = w2 · ẇ1 + w1 · ẇ2
w4 = sinw1 ẇ4 = cosw1 · ẇ1
w5 = w3 + w4 ẇ5 = ẇ3 + ẇ4

Nazar Khan Deep Learning

Automatic Differentiation Forward Reverse AD in Python

Forward Accumulation AD

I For computing ∂z
∂x2

, propagate again with seed values ẇ1 = 0 and ẇ2 = 1.
I Number of forward sweeps is equal to number of inputs.
I So forward AD is efficient when output size is much larger than input size.

Nazar Khan Deep Learning

Automatic Differentiation Forward Reverse AD in Python

Reverse Accumulation AD

I Fix the dependent variable and compute the derivative w.r.t each
sub-expression recursively.
∂y
∂x = ∂y

∂w1
∂w1
∂x =

(
∂y
∂w2

∂w2
∂w1

)
∂w1
∂x =

((
∂y
∂w3

∂w3
∂w2

)
∂w2
∂w1

)
∂w1
∂x = · · ·

I Define the adjoint w̄i = ∂y
∂wi

as the derivative w.r.t sub-expression wi .

I Notice the similarity with δj = ∂L
∂aj

in back-propagation.

Nazar Khan Deep Learning

Automatic Differentiation Forward Reverse AD in Python

Reverse Accumulation AD

Operations to compute value Operations to compute derivative
z5 = w5 w̄5 = 1 (seed)
w5 = w3 + w4 w̄4 = w̄5
w5 = w3 + w4 w̄3 = w̄5
w3 = w1 · w2 w̄2 = w̄3 · w1
w4 = sinw1 and w3 = w1 · w2 w̄1 = w̄3 · w2 + w̄4 · cosw1

Nazar Khan Deep Learning

Automatic Differentiation Forward Reverse AD in Python

Reverse Accumulation AD

I Number of reverse sweeps is equal to number of outputs.
I So reverse AD is efficient when input size is much larger than output size.

This is usually the case for classification problems.

Nazar Khan Deep Learning

Automatic Differentiation Forward Reverse AD in Python

AD in Python

I A Python package called Autograd implements reverse mode automatic
differentiation.

I Elementary operations such as +, sin, xk etc. are overloaded by also
computing their derivates 1, cos, kx etc..

I If required, user-defined complex functions and their derivative
implementations can be registered with Autograd.

Nazar Khan Deep Learning

Automatic Differentiation Forward Reverse AD in Python

Logistic Regression via Automatic Differentiation
Binary classifier with no hidden layer

Just a perceptron with logistic sigmoid activation func-
tion. Models probability of class 1 instead of decision.

y = p(C1|x) = σ(wTx)

1− y = p(C2|x) = 1− p(C1|x)

�0

�1

��

�
�

Binary cross-entropy loss

L(w) = −
N∑

n=1

tn ln yn + (1− tn) ln (1− yn)

What is ln(0)? ln(1)?
Plot ln(y) for y > 0?
Plot ln(y) for 0 < y ≤ 1?
When is L(w) = 0?
Can L(w) be negative?

Nazar Khan Deep Learning

Automatic Differentiation Forward Reverse AD in Python

Logistic Regression via Automatic Differentiation
Binary classifier with no hidden layer

import pylab
import sklearn.datasets
import autograd.numpy as np
from autograd import grad

Generate the data
train_X, train_y = sklearn.datasets.make_moons(500, noise=0.1)

Define the activation, prediction and loss functions for Logistic Regression
def activation(x):

return 0.5*(np.tanh(x) + 1)

def predict(weights, inputs):
return activation(np.dot(inputs, weights))

def loss(weights):
preds = predict(weights, train_X)
label_probabilities = np.log(preds) * train_y + np.log(1 - preds) * (1 - train_y)
return -np.sum(label_probabilities)

Compute the gradient of the loss function
gradient_loss = grad(loss)

Set the initial weights
weights = np.array([1.0, 1.0])

Steepest Descent

Nazar Khan Deep Learning

Automatic Differentiation Forward Reverse AD in Python

Logistic Regression via Automatic Differentiation
Binary classifier with no hidden layer

loss_values = []
learning_rate = 0.001
for i in range(100):

loss_values.append(loss(weights))
step = gradient_loss(weights)
weights -= step * learning_rate

Plot the decision boundary
x_min, x_max = train_X[:, 0].min() - 0.5, train_X[:, 0].max() + 0.5
y_min, y_max = train_X[:, 1].min() - 0.5, train_X[:, 1].max() + 0.5
x_mesh, y_mesh = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))
Z = predict(weights, np.c_[x_mesh.ravel(), y_mesh.ravel()])
Z = Z.reshape(x_mesh.shape)
cs = pylab.contourf(x_mesh, y_mesh, Z, cmap=pylab.cm.Spectral)
pylab.scatter(train_X[:, 0], train_X[:, 1], c=train_y, cmap=pylab.cm.Spectral)
pylab.colorbar(cs)

Plot the loss over each step
pylab.figure()
pylab.plot(loss_values)
pylab.xlabel("Steps")
pylab.ylabel("Loss")
pylab.show()

Nazar Khan Deep Learning

	Automatic Differentiation
	Forward
	Reverse
	AD in Python

