
CS-568 Deep Learning

Nazar Khan

PUCIT

Training Multilayer Perceptrons: Backpropagation

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Neural Networks for Regression
Gradients

I Regression requires continuous output yk ∈ R.
I So use identity activation function yk = f (ak) = ak .
I Loss can be written as

L(W(1),W(2)) =
1
2

N∑
n=1

‖yn − tn‖2︸ ︷︷ ︸
Ln

=
1
2

N∑
n=1

K∑
k=1

(ynk − tnk)
2

I Loss L depends on sum of individual losses Ln.
I In the following, we will focus on loss Ln for the n-th training sample.
I We will drop n for notational clarity and refer to Ln simply as L.

Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

How do weights influence loss?

1x0

x1

x2

x3

x4

1

L

w
(1)
41

w
(2)
21

I w
(2)
kj influences a(2)k which influences yk which influences L.

I For scalar dependencies, use chain rule.
I w

(1)
ji influences a(1)j which influences zj which influences a(2)1 , a

(2)
2 , a

(2)
3

which influence y1, y2, y3 which influence L.
I For vector/multivariate dependencies, use multivariate chain rule.

Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

How do weights influence loss?

1x0

x1

x2

x3

x4

1

L

w
(1)
41

w
(2)
21

I Layer 2: L← yk ← a
(2)
k ← w

(2)
kj .

L(yk(a
(2)
k (w

(2)
kj)))

I Layer 1: L← y← a(2) ← zj ← a
(1)
j ← w

(1)
ji .

L(y1(a
(2)
1 (zj(a

(1)
j (w

(1)
ji))))︸ ︷︷ ︸

y1(w
(1)
ji)

, y2(a
(2)
2 (zj(a

(1)
j (w

(1)
ji))))︸ ︷︷ ︸

y2(w
(1)
ji)

, . . . , yk(a
(2)
k (zj(a

(1)
j (w

(1)
ji)))))︸ ︷︷ ︸

yk (w
(1)
ji)

Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Multivariate Chain Rule

I The chain rule of differentiation states

df (u(x))

dx
=

df

du

du

dx

I The multivariate chain rule of differentiation
states

df (u(x),v(x))

dx
=
∂f

∂u

du

dx
+
∂f

∂v

dv

dx

I The multivariate chain rule applied to compute
derivatives w.r.t weights of hidden layers has a
special name – backpropagation.

x u f

x

u

v

f (u, v)

Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Backpropagation

I For the output layer weights

∂L(yk(a
(2)
k (w

(2)
kj)))

∂w
(2)
kj

=
∂L

∂a
(2)
k

∂a
(2)
k

∂w
(2)
kj

= δkzj

I For the hidden layer weights, using the multivariate chain rule

∂

∂w
(1)
ji

L(y1(a
(2)
1 (zj(a

(1)
j (w

(1)
ji)))),y2(a

(2)
2 (zj(a

(1)
j (w

(1)
ji)))), . . . ,yk(a

(2)
k (zj(a

(1)
j (w

(1)
ji)))))

=
∂L

∂a
(1)
j

∂a
(1)
j

∂w
(1)
ji

=
K∑

k=1

∂L

∂a
(2)
k︸ ︷︷ ︸
δk

∂a
(2)
k

∂zj︸ ︷︷ ︸
w

(2)
kj

∂zj

∂a
(1)
j︸ ︷︷ ︸

h′(a
(1)
j)︸ ︷︷ ︸

∂L

∂a
(1)
j

=δj

∂a
(1)
j

∂w
(1)
ji︸ ︷︷ ︸
xi

= δjxi

I For each layer, notice the familiar form of gradient = error×input.
Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Backpropagation

I It is important to note that

δj = h′(aj)
K∑

k=1

δkwkj

yields the error δj at hidden neuron j by backpropagating the errors δk
from all output neurons that use the output of neuron j .

I More generally, compute error δj at a layer by backpropagating the errors
δk from next layer.

I Hence the names error backpropagation, backpropagation, or simply
backprop.

I Very useful machine learning technique that is not limited to neural
networks.

Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Backpropagation

δ
(1)
j = h′(aj)

K∑
k=1

δ
(2)
k wkj

y1 ←− t1

y2 ←− t2
δ
(1)
1

δ
(2)
1

δ
(2)
2

w
(2)
11

w
(2)
21

Figure: Visual representation of backpropagation of delta values of layer l + 1 to
compute delta values of layer l .

Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Backpropagation
Learning Algorithm

1. Forward propagate the input vector xn to compute activations and
outputs of every neuron in every layer.

2. Evaluate δk for every neuron in output layer.
3. Evaluate δj for every neuron in every hidden layer via backpropagation.
4. Compute derivative of each weight ∂Ln

∂w via δ×input.
5. Update each weight via gradient descent w τ+1 = w τ − η ∂Ln∂w .

Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Background Math
A (−1, 1) sigmoidal function

I Since range of logistic sigmoid σ(a) is (0, 1), we can obtain a function
with (−1, 1) range as 2σ(a)− 1.

I Another related function with (−1, 1) range is the tanh function.

tanh(a) = 2σ(2a)− 1 =
ea − e−a

ea + e−a

where σ is applied on 2a.
I Preferred1over logistic sigmoid as activation function h(a) of hidden

neurons.
I Just like the logistic sigmoid, derivative of tanh(a) is simple:

1− tanh2(a). (Prove it.)

1LeCun et al., ‘Efficient backprop’.
Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

A Simple Example

I Two-layer MLP for multivariate regression from RD −→ RK .
I Linear outputs yk = ak with half-SSE L = 1

2
∑K

k=1(yk − tk)
2.

I M hidden neurons with tanh(·) activation functions.

Forward propagation

aj =
D∑
i=0

w
(1)
ji xi

zj = tanh(aj)

z0 = 1

yk =
M∑
j=0

w
(2)
kj zj

δk = yk − tk

Backpropagate

δj = (1− z2
j)

K∑
k=1

w
(2)
kj δk

I Compute derivatives ∂L

∂w
(1)
ji

= δjxi and ∂L

∂w
(2)
kj

= δkzj .

Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Backpropagation
Verifying Correctness

I Numerical derivatives can be computed via finite central differences

∂Ln
∂wji

=
Ln(wji + ε)− Ln(wji − ε)

2ε
+ O(ε2)

I Analytical derivatives computed via backpropagation must be compared
with numerical derivatives for a few examples to verify correctness.

I Any implementation of analytical derivatives (not just backpropagation)
must be compared with numerical derivatives.

I Notice that we could have avoided backpropagation and computed all
required derivatives numerically.
I But cost of numerical differentiation is O(W 2) while that of

backpropagation is O(W) where W is the total number of weights (and
biases) in the network. (Why?)

Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Neural Network training finds local minimum

I For optimisation, we notice that w∗ must be a stationary point of E (w).
I Minimum, maximum, or saddle point.
I A saddle point is where gradient vanishes but point is not an extremum

(Example).

I The goal in neural network minimisation is to find a local minimum.
I A global minimum, even if found, cannot be verified as globally minimum.
I Due to symmetry, there are multiple equivalent local minima. Reaching

any suitable local minimum is the goal of neural network optimisation.
I Since there are no analytical solutions for w∗, we use iterative, numerical

procedures.

Nazar Khan Deep Learning

http://mathcatalog.tumblr.com/post/77619843777/studygeek-without-mathematics-you-wouldnt-have

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Optimisation Options

I Options for iterative optimisation
I Online methods

I Stochastic gradient descent
I Stochastic gradient descent using mini-batches

I Batch methods
I Batch gradient descent
I Conjugate gradient descent
I Quasi-Newton methods

I Online methods
I converge faster since parameter updates are more frequent, and
I have greater chance of escaping local minima because stationary point

w.r.t to whole data set will generally not be a stationary point w.r.t an
individual data point.

I Batch methods: Conjugate gradient descent and quasi-Newton methods
I are more robust and faster than batch gradient descent, and
I decrease the error function at each iteration until arriving at a minimum.

Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Problems with sigmoidal neurons

a

σ(a) = 1
1+e−a

σ′(a) = e−a

(1+e−a)2

a
4 + 1

2

I For large |a|, sigmoid value approaches either 0 or 1. This is called
saturation.

I When the sigmoid saturates, the gradient approaches zero.
I Neurons with sigmoidal activations stop learning when they saturate.
I When they are not saturated, they are almost linear.
I There is another reason for the gradient to approach zero during

backpropagation.

Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Vanishing Gradients

I Notice that gradient of the sigmoid is always between 0 and 1
4 .

I Now consider the backpropagation equation.

δj = h′(aj)︸ ︷︷ ︸
≤ 1

4

K∑
k=1

wkjδk

where δk will also contain at least one factor of ≤ 1
4 .

I This means that values of δj keep getting smaller as we backpropagate
towards the early layers.

I Since gradient = δ×input, the gradients also keep getting smaller for the
earlier layers. Known as the vanishing gradients problem.

I Therefore, while the network might be deep, learning will not be deep.

Nazar Khan Deep Learning

Multivariate Chain Rule Backpropagation Optimisation Vanishing Gradients Activation Functions

Better Activation Functions

Name Formula Plot Derivative Comments
Logistic sigmoid 1

1+e−a a f (a)(1− f (a)) Vanishing gradients

Hyperbolic tangent tanh(a)
a

1− tanh2(a) Vanishing gradients

Rectified Linear Unit
(ReLU)

{
a if a > 0
0 if a ≤ 0

a

{
1
0

Dead neurons.
Sparsity.

Leaky ReLU

{
a if a > 0
ka if a ≤ 0

a

{
1
k

0 < k < 1

Exponential Linear Unit
(ELU)

{
a if a > 0
k(ea − 1) if a ≤ 0

a

{
1
f (a)− k

k > 0.

I Saturated sigmoidal neurons stop learning. Piecewise-linear units keep
learning by avoiding saturation.

I ELU leads to better accuracy and faster training.
I Take home message: Use a member of the LU family. They avoid i)

saturation and ii) the vanishing gradient problem.

Nazar Khan Deep Learning

	Multivariate Chain Rule
	Backpropagation
	Optimisation
	Vanishing Gradients
	Activation Functions

