CS-568 Deep Learning

Nazar Khan

PUCIT

Training Multilayer Perceptrons: Backpropagation

Multivariate Lhain Rule

Neural Networks for Regression
Gradients

» Regression requires continuous output y,x € R.

» So use identity activation function yx = f(ax) = ax.

v

Loss can be written as

N
ZZ Ynk — tnk

n=1 k=1

N
Lw®, W) = 13

{<
3
_
3
l\.)\l—l

v

Loss L depends on sum of individual losses L.

v

In the following, we will focus on loss L, for the n-th training sample.

v

We will drop n for notational clarity and refer to L, simply as L.

Nazar Khan Deep Learning

Multivariate Lhain Rule

How do weights influence loss?

“ @

W/Ef) influences af(z) which influences yj which influences L.

vy

For scalar dependencies, use chain rule.

> Vl/j(l-l) influences aj(.l) which influences z; which influences agz), a§2) agz)

which influence y1, y», y3 which influence L.

» For vector/multivariate dependencies, use multivariate chain rule.

Nazar Khan Deep Learning

Multivariate Lhain Rule

How do weights influence loss?

o (1)
X1
(1)
Wa1
2 @
s @
“ @

» Layer 2: L < yy + af) — W/Ej2).

Liu(ai (wi))
> Layer 1: L<—y<—a(2)<_z<_a() j(’_)_

Liy1(aP (213 (W), v2 (a1 (3 W), - v (@2 (a8 (wi)))))

n(Wf,'l))

yz(wj,-) yk(wj,-)

Nazar Khan Deep Learning

Multivariate Lhain Rule

Multivariate Chain Rule

» The chain rule of differentiation states

df(u(x)) df du
dx " dudx
» The multivariate chain rule of differentiation
states
df (u(x).v(x) _ OF du OF dv
dx ~ Qudx Ovdx
» The multivariate chain rule applied to compute

derivatives w.r.t weights of hidden layers has a
special name — backpropagation.

Nazar Khan Deep Learning

Backpropagation

Backpropagation

» For the output layer weights

OL(yk(aD (W) oL 92 L
2 = 2 2) — Yk4j
ow? 922 ow®

» For the hidden layer weights, using the multivariate chain rule

9 (1)L(Y1(P (i))a2@P (@ W), - (6 (8 (w)))
i

(1)

- aL 94| EK: oL 02 oz 0at"
k=

= = 0jX
8 9 8 ji

2® 05 5,0 50
N—— J J’

2)
g h’(aj(.l)) Xi

» For each layer, notice the familiar form of gradient = errorxinput.

Nazar Khan Deep Learning

Backpropagation

Backpropagation

» |t is important to note that

K
(51' = h’(aj) Z 5kaj
k=1

yields the error ¢; at hidden neuron j by backpropagating the errors ¢
from all output neurons that use the output of neuron j.

» More generally, compute error §; at a layer by backpropagating the errors
0, from next layer.

» Hence the names error backpropagation, backpropagation, or simply
backprop.

» Very useful machine learning technique that is not limited to neural
networks.

Nazar Khan Deep Learning

Backpropagation

Backpropagation

‘ \)\
/ wi? e Z Rl

Figure: Visual representation of backpropagation of delta values of layer / + 1 to
compute delta values of layer /.

Nazar Khan Deep Learning

Backpropagation

Backpropagation
Learning Algorithm

o &b

Forward propagate the input vector x, to compute activations and
outputs of every neuron in every layer.

Evaluate 0, for every neuron in output layer.

Evaluate 0; for every neuron in every hidden layer via backpropagation.

Compute derivative of each weight %me via d Xinput.

1

OLa

Update each weight via gradient descent w™ ™ = w™ — NG

Nazar Khan Deep Learning

Backpropagation

Background Math

A (-

>

>

1,1) sigmoidal function

Since range of logistic sigmoid o(a) is (0,1), we can obtain a function
with (—1,1) range as 20(a) — 1.

Another related function with (—1,1) range is the tanh function.
e? _ g2
tanh(a) =20(2a) -1 = ——
anh(a) o(2a) e

where o is applied on 2a.

Preferred®over logistic sigmoid as activation function h(a) of hidden
neurons.

Just like the logistic sigmoid, derivative of tanh(a) is simple:
1 — tanh?(a). (Prove it.)

'LeCun et al., ‘Efficient backprop'.

Nazar Khan Deep Learning

Backpropagation

A Simple Example

» Two-layer MLP for multivariate regression from RP —; RX.
» Linear outputs yx = ax with half-SSE L = %Zszl(Yk — t)?.
» M hidden neurons with tanh(-) activation functions.

Forward propagation Backpropagate

o Z M), 5 = Z w8y

zj = tanh(aj)

=1
M
Yo=Y wz
j=0
Ok = yk — tk
» Compute derivatives ﬁ = 0;x; and 8W 2) = 0xZj.

Ji]

Nazar Khan Deep Learning

Backpropagation

Backpropagation
Verifying Correctness

» Numerical derivatives can be computed via finite central differences

oL, Lo(wji+€) — Ly(wji —€) 2
owji 2¢ o)

» Analytical derivatives computed via backpropagation must be compared
with numerical derivatives for a few examples to verify correctness.

» Any implementation of analytical derivatives (not just backpropagation)
must be compared with numerical derivatives.
» Notice that we could have avoided backpropagation and computed all
required derivatives numerically.
> But cost of numerical differentiation is O(W?) while that of

backpropagation is O(W) where W is the total number of weights (and
biases) in the network. (Why?)

Nazar Khan Deep Learning

Uptimisation

Neural Network training finds local minimum

» For optimisation, we notice that w* must be a stationary point of E(w).

» Minimum, maximum, or saddle point.
» A saddle point is where gradient vanishes but point is not an extremum
(Example).

» The goal in neural network minimisation is to find a local minimum.

v

A global minimum, even if found, cannot be verified as globally minimum.

» Due to symmetry, there are multiple equivalent local minima. Reaching
any suitable local minimum is the goal of neural network optimisation.

» Since there are no analytical solutions for w*, we use iterative, numerical
procedures.

Nazar Khan Deep Learning

http://mathcatalog.tumblr.com/post/77619843777/studygeek-without-mathematics-you-wouldnt-have

Uptimisation

Optimisation Options

» Options for iterative optimisation
» Online methods
> Stochastic gradient descent
> Stochastic gradient descent using mini-batches
> Batch methods
> Batch gradient descent
> Conjugate gradient descent
> Quasi-Newton methods

» Online methods

> converge faster since parameter updates are more frequent, and

> have greater chance of escaping local minima because stationary point
w.r.t to whole data set will generally not be a stationary point w.r.t an
individual data point.

» Batch methods: Conjugate gradient descent and quasi-Newton methods

> are more robust and faster than batch gradient descent, and
> decrease the error function at each iteration until arriving at a minimum.

Nazar Khan Deep Learning

Vanishing Gradients

Problems with sigmoidal neurons

» For large |a|, sigmoid value approaches either 0 or 1. This is called
saturation.

» When the sigmoid saturates, the gradient approaches zero.

» Neurons with sigmoidal activations stop learning when they saturate.

» When they are not saturated, they are almost linear.

» There is another reason for the gradient to approach zero during

backpropagation.

Nazar Khan Deep Learning

Vanishing Gradients

Vanishing Gradients

» Notice that gradient of the sigmoid is always between 0 and %

» Now consider the backpropagation equation.

(Z ijék
S

m.-

where 0, will also contain at /east one factor of < %

» This means that values of §; keep getting smaller as we backpropagate
towards the early layers.

» Since gradient = dxinput, the gradients also keep getting smaller for the
earlier layers. Known as the vanishing gradients problem.

» Therefore, while the network might be deep, learning will not be deep.

Nazar Khan Deep Learning

Better Activation Functions

Activation Functions

Name Formula Plot Derivative Comments
Logistic sigmoid T}r“ — . f(a)(1—f(a)) Vanishing gradients
Hyperbolic tangent tanh(a) _ Co1- tanh?(a) Vanishing gradients

Rectified Linear Unit

{

a ifa>0

Dead neurons.

(ReLU) 0 ifa<o 0 Sparsity.
if 1
Leaky ReLU a fa>0 i 0<k<l
ka ifa<o0 k
Exponential Linear Unit a fa>0 ___ ./ | 1
k> 0.
(ELU) k(e*—1) ifa<o0 f(a) — k

> Saturated sigmoidal neurons stop learning. Piecewise-linear units keep
learning by avoiding saturation.

» ELU leads to better accuracy and faster training.

» Take home message: Use a member of the LU family. They avoid /)

saturation and /i) the vanishing gradient problem.

Nazar Khan

Deep Learning

	Multivariate Chain Rule
	Backpropagation
	Optimisation
	Vanishing Gradients
	Activation Functions

