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Convolution

Source: http://www.texample.net/tikz/examples/convolution-of-two-functions/
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2D Convolution
Example

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

M

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗M

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Modified from https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution

M is usually called a mask or kernel or filter.
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Dealing with boundaries

I What about edge and corner pixels where the mask goes outside the
image boundaries?
I Expand image I with virtual pixels. Options are:

1. Fill with a particular value, e.g. zeros.
2. Replicating boundaries: fill with nearest pixel value.
3. Reflecting boundaries: mirror the boundary

I Fatalism: just ignore them. Not recommended since size of I ∗M will
shrink.
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Dealing with boundaries
Expand by zeros

For a 5× 5 image and 5× 5 mask

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 a b c d e 0 0
0 0 f g h i j 0 0
0 0 k l m n o 0 0
0 0 p q r s t 0 0
0 0 u v w x y 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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A Neuron as a Detector

I A neuron can be viewed as a detector.
I When it fires, the input must have been similar to its weights.

I Firing =⇒ wTx was high =⇒ w was similar to x
I So neuron firing indicates detection of something similar to its weights.

uTv = ‖u‖‖v‖ cos θ

I Since −1 ≤ cos θ ≤ 1, uTv is highest when cos θ = 1
I That happens when θ = 0
I That happens when vectors u and v point in the same direction.
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Convolutional Neural Networks

I Now we will look at networks that produce neuronal output via
convolution.

I Known as Convolutional Neural Networks (CNNs).
I Most frequently used network architecture.
I Exploits local correlation of inputs.
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Building Blocks of CNNs
Viewing convolution as neurons

Single channel input

�

����(� ∗ )�1

Subsample

�1

∗

Multichannel input

�
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Subsample

�1

∗
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Building blocks of CNNs
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Building blocks of CNNs
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Subsample
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Input image
transformed into a
new representation
of M channels.
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CNN

I Convolution by M filters produces M channels.
I They represent an M-channel transformation of the input image I .
I This M-channel image can now be transformed further via additional

convolution filters.
I Convolution-subsampling block can be repeated multiple times.
I I → M1 channels → M2 channels → · · · → Mb channels → flattening →

MLP.

�
Conv+Subsample

6 filters
Conv+Subsample

12 filters
Flattening

40 × 40 × 3 20 × 20 × 6 10 × 10 × 12 1200 × 1

Fully
connected

MLP
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Convolutional Neural Networks

I For recognition of hand-written digits, we have seen that inputs are
images and outputs are posterior probabilities p(Ck |x) for k = 1, . . . , 10.

I The digits true identity is invariant under
I translation, scaling, (small) rotation, and
I small elastic deformations (multiple writings of the same digit by the same

person will have subtle differences).

I The output of the neural network should also be invariant to such changes.
I A traditional fully connected neural network can, in principle, learn these

invariances using lots of examples.
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Convolutional Neural Networks

I However, it totally ignores the local correlation property of images.
I Nearby pixels are more strongly correlated than pixels that are far apart.

I Modern computer vision exploits local correlation by extracting features
from local patches and combines this information to detect higher-order
features.
I Example: Gradients −→ Edges −→ Lines −→ . . . .

I Local features useful in one sub-region can be useful in other sub-regions.
I Example: same object appearing at different locations.

I This weakness of standard neural nets is overcome by CNNs.
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NN vs. CNN

NN

I Global receptive fields due to
being fully connected.

I Separate weights for each neuron.

CNN

I Local receptive fields due to being
sparsely connected.

I Shared weights among different
neurons.

I Subsampling of each layer’s
outputs.

I Receptive field of a neuron consists of previous layer neurons that it is
connected to (or looking at).
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Convolutional layer

I Consists of multiple arrays of neurons. Each such array is called a slice or
more accurately feature map.

I Each neuron in a feature map
I is connected to only few neurons in the previous layer, but
I uses the same weight values as all other neurons in that feature map.

I So within a feature map, we have both
I local receptive fields, and
I shared weights.
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Convolutional layer

I Example: A feature map may have
I 100 neurons placed in a 10× 10 array, with
I each neuron getting input from a 5× 5 patch of neurons in the previous

layer (receptive field), and
I the same 26(= 5× 5+ 1) weights shared between these 100 neurons.

I Viewed as detectors, all 100 neurons detect the same 5× 5 pattern
but at different locations of the previous layer.

I Different feature maps will learn1 to detect different kinds of patterns.
I For example, one feature map might learn to detect horizontal edges while

others might learn to detect vertical or diagonal edges and so on.

1based on their learned weights
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Convolutional layer

I To compute activations of the 100 neurons, a dot-product is computed
between the same shared weights and different 5× 5 patches of previous
layer neurons.

I This is equivalent to sliding a window of weights over the previous
layer and computing the dot-product at each location of the
window.

I Therefore, activations of the feature map neurons are computed via
convolution of the previous layer with a kernel comprising the shared
weights. Hence the name of this layer.

Nazar Khan Deep Learning



Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Subsampling layer

I Reduces the spatial dimensions of the previous layer by downsampling.
Also called pooling layer.

I Example: downsampling previous layer of n × n neurons by factor 2 yields
a pooled layer of n

2 ×
n
2 neurons.

I No adjustable weights. Just a fixed downsampling procedure.
I Reduces computations in subsequent layers.
I Reduces number of weights in subsequent layers. This reduces overfitting.

Nazar Khan Deep Learning



Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Subsampling

I Options: From non-overlapping 2× 2 patches
I pick top-left (standard downsampling by factor 2)
I pick average (mean-pooling)
I pick maximum (max-pooling)
I pick randomly (stochastic-pooling)

I Fractional max-pooling: pick pooling region randomly.

Figure: Max-pooling with 2× 2 receptive fields, and stride of 2 neurons. Source:
http://cs231n.github.io/convolutional-networks/
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Subsampling

I The options in the last slide discard 75% of the data.
I They correspond to

I neurons with 2× 2 receptive fields, and
I stride of 2 neurons.

I This is the most commonly used configuration. Other options exist but
note that pooling with larger receptive fields discards too much data.

I Subsampling layer can be skipped if convolution layers uses stride>1 since
that also produces a subsampled output.
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Subsampling

A pooling layer
I with F × F receptive field and stride S ,
I "looking at" a W1 × H1 × D1 input volume,
I produces a W2 × H2 × D2 output volume, where

I W2 = W1−F
S + 1

I H2 = H1−F
S + 1

I D2 = D1.
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Fully Connected Layers

I After flattening, a fully connected MLP can be used.
I The last layer has

I neurons equal to the desired output size, and
I activation functions based on the problem to be solved.

I The flattened layer can therefore be viewed as a transformation φ(x) that
is fed into an MLP.

I Similarly, outputs of earlier layers are intermediate representations of the
input.
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Intermediate Representations

Intermediate feature representations. Early layers form simple, low-level representations of
the input. They are used to incrementally form more complex, high-level representations.

Source: http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf

Nazar Khan Deep Learning

http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf


Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Backpropagation in CNNs

�
Conv+Subsample

6 filters
Conv+Subsample

12 filters
Flattening

40 × 40 × 3 20 × 20 × 6 10 × 10 × 12 1200 × 1

Fully
connected

MLP

1. Compute δk = ∂L
∂ak

for each neuron in flattened layer using standard MLP
backpropagation.

2. Directly copy these δks at corresponding locations of previous subsampling
layer.
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Backpropagation from subsampling to convolution layer

I Record index of pooled neuron during forward pass.
I Backpropagate δ only to this pooled neuron.

��

SubsampleConvolution

Copy

I Mean-pooling is different.
I All neurons are picked with uniform weight in forward pass.
I So backpropagate δ to each neuron with uniform weight.

1

4
��

SubsampleConvolution

Copy to all 4 neurons
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Backpropagation in a convolutional layer

��

ConvolutionSubsample
�1
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Backpropagation Equation

Recall the backpropagation equation for a traditional neuron.

δ
(1)
j = h′(aj)

K∑
k=1

δ
(2)
k wkj

y1 ←− t1

y2 ←− t2
δ
(1)
1

δ
(2)
1

δ
(2)
2

w
(2)
11

w
(2)
21

1. Take all neurons affected by neuron j .
2. Compute dot-product between their δ values and connecting weights.
3. Multiply result by derivative of activation function of neuron j .
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Backpropagation in a convolutional layer

I Now consider a
neuron in a
convolutional
layer.

I In the forward
pass, the blue
neuron affects all
neurons marked by
x in the next layer.

I Notice the flipped
role of weights.

x xx

�23 �22 �21

x x x

x x x

�33 �32 �31

�13 �12 �11
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Backpropagation in a convolutional layer

I In the backward pass, the blue neuron computes the dot-product between
δ values at the x-locations and connecting weights.

x x x
x xx
x x x

�88

�42 �43 �44

�32 �34�33

�11

�22 �23 �24

�13 �12 �11

�23 �21�22

�33 �32 �31

I The connecting weights are a horizontally and vertically flipped version of
the weights used in the forward convolution pass.
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Backpropagation in a convolutional layer

I The adjacent red neuron affects a new but overlapping set of x-locations
using the same connecting weights.

x x x

x x

�22

x

x x x

�23 �24 �25

�33 �35

�22

�34

�43 �44 �45

�11

�88

�33 �32 �31

�13 �12 �11

�23 �21

�22

�22

I Since the weights are shared, the only difference is between the
x-locations.
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Backpropagation in a convolutional layer

�13 �12 �11

�23 �21�22

�33 �32 �31 �33 �32 �31

�13 �12 �11

�23 �21

�22

�22

�33 �32 �31

�13 �12 �11

�21�23 �22

I Equivalent to convolving the δ-map by flipped weights.
I Therefore, backpropagation of δ values from a convolution layer is

1. just a convolution of the δ-map using flipped weights,
2. followed by multiplication with derivatives of activation functions.
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Backpropagation in a convolutional layer

I What about boundary neurons? Who did they affect?

�22 �21

�11�12

�32

�13

�31

�23

�33

�12

�22 �21

�11

�32

�13

�31

�23

�33

�12

�22 �21

�11

I Equivalent to convolving the δ-map by flipped weights using
zero-padding.

I Therefore, backpropagation of δ values from a convolution layer is
1. just a convolution of the δ-map using flipped weights with

zero-padding,
2. followed by multiplication with derivatives of activation functions.
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Computing gradients in convolutional layer

I Consider a valid convolution of an n × n array with another n × n array.
I What will be the size of the result?
I Now consider a valid convolution of an n + 1× n + 1 array with an n × n

array.
I What will be the size of the result?
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Computing gradients in convolutional layer
1D case

I Backpropagation computes the per-neuron δ-maps only.
I Per-weight derivatives are computed as the product of a traditional

neuron’s δ value and its input.

y1 ←− t1

y2 ←− t2
δ
(1)
1

δ
(2)
1

δ
(2)
2

w
(2)
11

w
(2)
21

I Consider 1D convolutional layer with 3× 1 filter.

�1

�2

�3

�4

�5

�1

�2

�3

�4

�5

0

0

∂L

∂w1
= δ10+ δ2x1 + δ3x2 + δ4x3 + δ5x4

∂L

∂w2
= δ1x1 + δ2x2 + δ3x3 + δ4x4 + δ5x5

∂L

∂w3
= δ1x2 + δ2x3 + δ3x4 + δ4x5 + δ50


=⇒

[
δ1 δ2 δ3 δ4 δ5

]
? (valid)[

0 x1 x2 x3 x4 x5 0
]

I Verify that ∂L
∂b =

∑
δi .
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Computing gradients in convolutional layer
2D case

1. Zero-pad the input array with bK2 c zeros on each side2.
2. Perform valid convolution of the zero-padded input array by the δ-map of

the next layer to obtain a K × K array of derivatives of the convolution
weights.

�-map

Zero-padded	input

3. Derivative of bias is just the sum of the δ-map.

2Assuming square K × K convolution filter where K is odd
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CNN Variations

I There are lots of variations.
I Fully convolutional networks. No pooling and no fully connected layer.
I 1× 1 convolutions to reduce computations.
I Inception modules to combine multiple filter sizes.
I Residual blocks to avoid vanishing gradients.
I Depthwise separable convolutions to reduce parameters and computations.
I Lightweight and fast models (SqueezeNet, MobileNet, . . . ) for edge

computing.
I Fast search over hyperparameters (EfficientNet).
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