CS-568 Deep Learning

Nazar Khan

PUCIT

Convolutional Neural Networks

IN

onvolutional layer

Subsampling

C Layers

CNN Backprop

Convolution

Source: http://www.texample.net/tikz/examples/convolution-of-two-functions/

INN

Convolutional layer

2D Convolution *Example*

Modified from https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution

M is usually called a *mask* or *kernel* or *filter*.

Dealing with boundaries

- What about edge and corner pixels where the mask goes outside the image boundaries?
 - Expand image *I* with virtual pixels. Options are:
 - 1. Fill with a particular value, e.g. zeros.
 - 2. Replicating boundaries: fill with nearest pixel value.
 - 3. Reflecting boundaries: mirror the boundary
 - Fatalism: just ignore them. Not recommended since size of *I* * *M* will shrink.

Dealing with boundaries *Expand by zeros*

For a 5 \times 5 image and 5 \times 5 mask

A Neuron as a Detector

- A neuron can be viewed as a detector.
- When it fires, the input must have been similar to its weights.
 - Firing $\implies \mathbf{w}^T \mathbf{x}$ was high $\implies \mathbf{w}$ was similar to \mathbf{x}
- So neuron firing indicates detection of something similar to its weights.

Convolutional Neural Networks

- Now we will look at networks that produce neuronal output via convolution.
- ► Known as Convolutional Neural Networks (CNNs).
- Most frequently used network architecture.
- Exploits local correlation of inputs.

Building Blocks of CNNs Viewing convolution as neurons

Building blocks of CNNs

Building blocks of CNNs

	CNN		
CNINI			

CNN

- Convolution by *M* filters produces *M* channels.
- ▶ They represent an *M*-channel transformation of the input image *I*.
- This *M*-channel image can now be transformed further via additional convolution filters.
- Convolution-subsampling block can be repeated multiple times.
- ▶ $I \rightarrow M_1$ channels $\rightarrow M_2$ channels $\rightarrow \cdots \rightarrow M_b$ channels \rightarrow flattening \rightarrow MLP.

Convolutional Neural Networks

- For recognition of hand-written digits, we have seen that inputs are images and outputs are posterior probabilities p(C_k|x) for k = 1,...,10.
- The digits true identity is invariant under
 - translation, scaling, (small) rotation, and
 - small elastic deformations (multiple writings of the same digit by the same person will have subtle differences).
- The output of the neural network should also be invariant to such changes.
- A traditional fully connected neural network can, in principle, learn these invariances using lots of examples.

Convolutional Neural Networks

- ► However, it totally ignores the *local correlation* property of images.
 - Nearby pixels are more strongly correlated than pixels that are far apart.
- Modern computer vision exploits local correlation by extracting features from local patches and combines this information to detect higher-order features.
 - Example: Gradients \longrightarrow Edges \longrightarrow Lines \longrightarrow
- Local features useful in one sub-region can be useful in other sub-regions.
 - Example: same object appearing at different locations.
- This weakness of standard neural nets is overcome by CNNs.

NINI	CAINI			

NN vs. CNN

- Global receptive fields due to being fully connected.
- Separate weights for each neuron.

- Local receptive fields due to being sparsely connected.
- Shared weights among different neurons.
- Subsampling of each layer's outputs.

Receptive field of a neuron consists of previous layer neurons that it is connected to (or looking at).

- Consists of multiple arrays of neurons. Each such array is called a *slice* or more accurately *feature map*.
- Each neuron in a feature map
 - ▶ is connected to only few neurons in the previous layer, but
 - uses the same weight values as all other neurons in that feature map.
- So within a feature map, we have both
 - local receptive fields, and
 - shared weights.

- Example: A feature map may have
 - ▶ 100 neurons placed in a 10×10 array, with
 - each neuron getting input from a 5 × 5 patch of neurons in the previous layer (receptive field), and
 - the same $26(=5 \times 5 + 1)$ weights shared between these 100 neurons.
- Viewed as detectors, all 100 neurons detect the same 5 × 5 pattern but at different locations of the previous layer.
- ▶ Different feature maps will learn¹ to detect different kinds of patterns.
 - For example, one feature map might learn to detect horizontal edges while others might learn to detect vertical or diagonal edges and so on.

¹based on their learned weights

- To compute activations of the 100 neurons, a dot-product is computed between the same shared weights and different 5 × 5 patches of previous layer neurons.
- This is equivalent to sliding a window of weights over the previous layer and computing the dot-product at each location of the window.
- Therefore, activations of the feature map neurons are computed via convolution of the previous layer with a kernel comprising the shared weights. Hence the name of this layer.

CNN

Convolutional layer

Subsampling

FC La

Subsampling layer

- Reduces the spatial dimensions of the previous layer by downsampling. Also called *pooling* layer.
- Example: downsampling previous layer of $n \times n$ neurons by factor 2 yields a pooled layer of $\frac{n}{2} \times \frac{n}{2}$ neurons.
- ► No adjustable weights. Just a fixed downsampling procedure.
- Reduces computations in subsequent layers.
- Reduces number of weights in subsequent layers. This reduces overfitting.

Subsampling

- ▶ Options: From non-overlapping 2×2 patches
 - pick top-left (standard downsampling by factor 2)
 - pick average (mean-pooling)
 - pick maximum (*max-pooling*)
 - pick randomly (stochastic-pooling)
- Fractional max-pooling: pick pooling region randomly.

8

4

Figure: Max-pooling with 2 × 2 receptive fields, and stride of 2 neurons. Source: http://cs231n.github.io/convolutional-networks/

CNN

Convolutional layer

Subsampling

FC Layers

CNN Backprop

Subsampling

- \blacktriangleright The options in the last slide discard 75% of the data.
- They correspond to
 - neurons with 2×2 receptive fields, and
 - stride of 2 neurons.
- This is the most commonly used configuration. Other options exist but note that pooling with larger receptive fields discards too much data.
- Subsampling layer can be skipped if convolution layers uses stride>1 since that also produces a subsampled output.

Subsampling

A pooling layer

- with $F \times F$ receptive field and stride *S*,
- "looking at" a $W_1 \times H_1 \times D_1$ input volume,
- ▶ produces a $W_2 \times H_2 \times D_2$ output volume, where

▶
$$W_2 = \frac{W_1 - F}{S} + 1$$

▶ $H_2 = \frac{H_1 - F}{S} + 1$
▶ $D_2 = D_1$.

Fully Connected Layers

- ► After flattening, a fully connected MLP can be used.
- The last layer has
 - neurons equal to the desired output size, and
 - activation functions based on the problem to be solved.
- The flattened layer can therefore be viewed as a transformation $\phi(\mathbf{x})$ that is fed into an MLP.
- Similarly, outputs of earlier layers are *intermediate representations* of the input.

Intermediate Representations

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Intermediate feature representations. Early layers form simple, low-level representations of the input. They are used to incrementally form more complex, high-level representations. Source: http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf

Backpropagation in CNNs

- 1. Compute $\delta_k = \frac{\partial L}{\partial a_k}$ for each neuron in flattened layer using standard MLP backpropagation.
- 2. Directly copy these δ_k s at corresponding locations of previous subsampling layer.

Backpropagation from subsampling to convolution layer

- Record index of pooled neuron during forward pass.
- Backpropagate δ only to this pooled neuron.

- Mean-pooling is different.
 - All neurons are picked with uniform weight in forward pass.
 - So backpropagate δ to each neuron with uniform weight.

Backpropagation Equation

Recall the backpropagation equation for a traditional neuron.

$$\delta_j^{(1)} = h'(a_j) \sum_{k=1}^K \delta_k^{(2)} w_{kj}$$

- 1. Take all neurons affected by neuron j.
- 2. Compute dot-product between their δ values and connecting weights.
- 3. Multiply result by derivative of activation function of neuron j.

Subsampling

FC I

CNN Backprop

Backpropagation in a convolutional layer

- Now consider a neuron in a convolutional layer.
- In the forward pass, the blue neuron affects all neurons marked by x in the next layer.
- Notice the flipped role of weights.

W22

 w_{12}

х

x

 w_{31}

In the backward pass, the blue neuron computes the dot-product between δ values at the x-locations and connecting weights.

х	х	х		
х	x	х		
х	х	х		

δ_{11}					
	δ_{22}	δ_{23}	δ_{24}		
	δ_{32}	δ_{33}	δ_{34}		
	δ_{42}	w_{43}	w_{44}		
					δ_{88}

w ₃₃	w_{32}	w_{31}		
w_{23}	w_{22}	w_{21}		
w_{13}	w_{12}	w_{11}		

The connecting weights are a horizontally and vertically flipped version of the weights used in the forward convolution pass.

The adjacent red neuron affects a new but overlapping set of x-locations using the same connecting weights.

δ_{11}					
	δ_{23}	δ_{24}	δ_{25}		
	δ_{33}	δ_{34}	δ_{35}		
	δ_{43}	δ_{44}	δ_{45}		
					δ_{88}

	w ₃₃	w_{32}	w_{31}		
	w ₂₃	w_{22}	w_{21}		
	w_{13}	w_{12}	w_{11}		

Since the weights are shared, the only difference is between the x-locations.

w_{33}	w_{32}	w_{31}				w ₃₃	w_{32}	w_{31}				w ₃₃	w_{32}	w_{31}	
w_{23}	w_{22}	w_{21}				w ₂₃	w_{22}	w_{21}				w ₂₃	w_{22}	w_{21}	
w_{13}	w_{12}	w_{11}				w_{13}	w_{12}	w_{11}				w_{13}	w_{12}	w_{11}	

- Equivalent to convolving the δ -map by flipped weights.
- \blacktriangleright Therefore, backpropagation of δ values from a convolution layer is
 - 1. just a convolution of the δ -map using flipped weights,
 - 2. followed by multiplication with derivatives of activation functions.

What about boundary neurons? Who did they affect?

- Equivalent to convolving the δ-map by flipped weights using zero-padding.
- \blacktriangleright Therefore, backpropagation of δ values from a convolution layer is
 - 1. just a convolution of the $\delta\text{-map}$ using flipped weights with zero-padding,
 - 2. followed by multiplication with derivatives of activation functions.

Computing gradients in convolutional layer

- Consider a *valid* convolution of an $n \times n$ array with another $n \times n$ array.
- ► What will be the *size* of the result?
- Now consider a valid convolution of an n + 1 × n + 1 array with an n × n array.
- What will be the size of the result?

Computing gradients in convolutional layer 1D case

- ▶ Backpropagation computes the per-neuron δ -maps only.
- > Per-weight derivatives are computed as the product of a *traditional* neuron's δ value and its input.

• Consider 1D convolutional layer with 3×1 filter.

$$\begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow (valid)$$

$$\begin{bmatrix} 0 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & 0 \end{bmatrix}$$

$$Verify that \frac{\partial L}{\partial b} = \sum \delta_{i}.$$

Computing gradients in convolutional layer 2D case

- 1. Zero-pad the input array with $\lfloor \frac{K}{2} \rfloor$ zeros on each side².
- 2. Perform *valid* convolution of the *zero-padded input array* by the δ -map of the next layer to obtain a $K \times K$ array of derivatives of the convolution weights.

3. Derivative of bias is just the sum of the δ -map.

²Assuming square $K \times K$ convolution filter where K is odd

CNN Variations

- ► There are *lots* of variations.
 - Fully convolutional networks. No pooling and no fully connected layer.
 - 1×1 convolutions to reduce computations.
 - Inception modules to combine multiple filter sizes.
 - Residual blocks to avoid vanishing gradients.
 - Depthwise separable convolutions to reduce parameters and computations.
 - Lightweight and fast models (SqueezeNet, MobileNet, ...) for edge computing.
 - Fast search over hyperparameters (EfficientNet).