
CS-568 Deep Learning

Nazar Khan

PUCIT

Convolutional Neural Networks

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Convolution

Source: http://www.texample.net/tikz/examples/convolution-of-two-functions/

Nazar Khan Deep Learning

http://www.texample.net/tikz/examples/convolution-of-two-functions/

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

2D Convolution
Example

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

M

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗M

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Modified from https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution

M is usually called a mask or kernel or filter.

Nazar Khan Deep Learning

https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Dealing with boundaries

I What about edge and corner pixels where the mask goes outside the
image boundaries?
I Expand image I with virtual pixels. Options are:

1. Fill with a particular value, e.g. zeros.
2. Replicating boundaries: fill with nearest pixel value.
3. Reflecting boundaries: mirror the boundary

I Fatalism: just ignore them. Not recommended since size of I ∗M will
shrink.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Dealing with boundaries
Expand by zeros

For a 5× 5 image and 5× 5 mask

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 a b c d e 0 0
0 0 f g h i j 0 0
0 0 k l m n o 0 0
0 0 p q r s t 0 0
0 0 u v w x y 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

A Neuron as a Detector

I A neuron can be viewed as a detector.
I When it fires, the input must have been similar to its weights.

I Firing =⇒ wTx was high =⇒ w was similar to x
I So neuron firing indicates detection of something similar to its weights.

uTv = ‖u‖‖v‖ cos θ

I Since −1 ≤ cos θ ≤ 1, uTv is highest when cos θ = 1
I That happens when θ = 0
I That happens when vectors u and v point in the same direction.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Convolutional Neural Networks

I Now we will look at networks that produce neuronal output via
convolution.

I Known as Convolutional Neural Networks (CNNs).
I Most frequently used network architecture.
I Exploits local correlation of inputs.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Building Blocks of CNNs
Viewing convolution as neurons

Single channel input

�

����(� ∗)�1

Subsample

�1

∗

Multichannel input

�

����(� ∗)�1

Subsample

�1

∗

Nazar Khan Deep Learning

Building blocks of CNNs

∗ ∗∗

�

Subsample

����(� ∗)�1

�1 �2 ��

Subsample

����(� ∗)�2

Subsample

����(� ∗)��

Building blocks of CNNs

��

∗ ∗∗

�

Subsample

����(� ∗)�1

Subsample

����(� ∗)�2

Subsample

����(� ∗)��

�1

Input image
transformed into a
new representation
of M channels.

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

CNN

I Convolution by M filters produces M channels.
I They represent an M-channel transformation of the input image I .
I This M-channel image can now be transformed further via additional

convolution filters.
I Convolution-subsampling block can be repeated multiple times.
I I → M1 channels → M2 channels → · · · → Mb channels → flattening →

MLP.

�
Conv+Subsample

6 filters
Conv+Subsample

12 filters
Flattening

40 × 40 × 3 20 × 20 × 6 10 × 10 × 12 1200 × 1

Fully
connected

MLP

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Convolutional Neural Networks

I For recognition of hand-written digits, we have seen that inputs are
images and outputs are posterior probabilities p(Ck |x) for k = 1, . . . , 10.

I The digits true identity is invariant under
I translation, scaling, (small) rotation, and
I small elastic deformations (multiple writings of the same digit by the same

person will have subtle differences).

I The output of the neural network should also be invariant to such changes.
I A traditional fully connected neural network can, in principle, learn these

invariances using lots of examples.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Convolutional Neural Networks

I However, it totally ignores the local correlation property of images.
I Nearby pixels are more strongly correlated than pixels that are far apart.

I Modern computer vision exploits local correlation by extracting features
from local patches and combines this information to detect higher-order
features.
I Example: Gradients −→ Edges −→ Lines −→

I Local features useful in one sub-region can be useful in other sub-regions.
I Example: same object appearing at different locations.

I This weakness of standard neural nets is overcome by CNNs.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

NN vs. CNN

NN

I Global receptive fields due to
being fully connected.

I Separate weights for each neuron.

CNN

I Local receptive fields due to being
sparsely connected.

I Shared weights among different
neurons.

I Subsampling of each layer’s
outputs.

I Receptive field of a neuron consists of previous layer neurons that it is
connected to (or looking at).

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Convolutional layer

I Consists of multiple arrays of neurons. Each such array is called a slice or
more accurately feature map.

I Each neuron in a feature map
I is connected to only few neurons in the previous layer, but
I uses the same weight values as all other neurons in that feature map.

I So within a feature map, we have both
I local receptive fields, and
I shared weights.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Convolutional layer

I Example: A feature map may have
I 100 neurons placed in a 10× 10 array, with
I each neuron getting input from a 5× 5 patch of neurons in the previous

layer (receptive field), and
I the same 26(= 5× 5+ 1) weights shared between these 100 neurons.

I Viewed as detectors, all 100 neurons detect the same 5× 5 pattern
but at different locations of the previous layer.

I Different feature maps will learn1 to detect different kinds of patterns.
I For example, one feature map might learn to detect horizontal edges while

others might learn to detect vertical or diagonal edges and so on.

1based on their learned weights
Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Convolutional layer

I To compute activations of the 100 neurons, a dot-product is computed
between the same shared weights and different 5× 5 patches of previous
layer neurons.

I This is equivalent to sliding a window of weights over the previous
layer and computing the dot-product at each location of the
window.

I Therefore, activations of the feature map neurons are computed via
convolution of the previous layer with a kernel comprising the shared
weights. Hence the name of this layer.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Subsampling layer

I Reduces the spatial dimensions of the previous layer by downsampling.
Also called pooling layer.

I Example: downsampling previous layer of n × n neurons by factor 2 yields
a pooled layer of n

2 ×
n
2 neurons.

I No adjustable weights. Just a fixed downsampling procedure.
I Reduces computations in subsequent layers.
I Reduces number of weights in subsequent layers. This reduces overfitting.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Subsampling

I Options: From non-overlapping 2× 2 patches
I pick top-left (standard downsampling by factor 2)
I pick average (mean-pooling)
I pick maximum (max-pooling)
I pick randomly (stochastic-pooling)

I Fractional max-pooling: pick pooling region randomly.

Figure: Max-pooling with 2× 2 receptive fields, and stride of 2 neurons. Source:
http://cs231n.github.io/convolutional-networks/

Nazar Khan Deep Learning

http://cs231n.github.io/convolutional-networks/

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Subsampling

I The options in the last slide discard 75% of the data.
I They correspond to

I neurons with 2× 2 receptive fields, and
I stride of 2 neurons.

I This is the most commonly used configuration. Other options exist but
note that pooling with larger receptive fields discards too much data.

I Subsampling layer can be skipped if convolution layers uses stride>1 since
that also produces a subsampled output.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Subsampling

A pooling layer
I with F × F receptive field and stride S ,
I "looking at" a W1 × H1 × D1 input volume,
I produces a W2 × H2 × D2 output volume, where

I W2 = W1−F
S + 1

I H2 = H1−F
S + 1

I D2 = D1.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Fully Connected Layers

I After flattening, a fully connected MLP can be used.
I The last layer has

I neurons equal to the desired output size, and
I activation functions based on the problem to be solved.

I The flattened layer can therefore be viewed as a transformation φ(x) that
is fed into an MLP.

I Similarly, outputs of earlier layers are intermediate representations of the
input.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Intermediate Representations

Intermediate feature representations. Early layers form simple, low-level representations of
the input. They are used to incrementally form more complex, high-level representations.

Source: http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf

Nazar Khan Deep Learning

http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Backpropagation in CNNs

�
Conv+Subsample

6 filters
Conv+Subsample

12 filters
Flattening

40 × 40 × 3 20 × 20 × 6 10 × 10 × 12 1200 × 1

Fully
connected

MLP

1. Compute δk = ∂L
∂ak

for each neuron in flattened layer using standard MLP
backpropagation.

2. Directly copy these δks at corresponding locations of previous subsampling
layer.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Backpropagation from subsampling to convolution layer

I Record index of pooled neuron during forward pass.
I Backpropagate δ only to this pooled neuron.

��

SubsampleConvolution

Copy

I Mean-pooling is different.
I All neurons are picked with uniform weight in forward pass.
I So backpropagate δ to each neuron with uniform weight.

1

4
��

SubsampleConvolution

Copy to all 4 neurons

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Backpropagation in a convolutional layer

��

ConvolutionSubsample
�1

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Backpropagation Equation

Recall the backpropagation equation for a traditional neuron.

δ
(1)
j = h′(aj)

K∑
k=1

δ
(2)
k wkj

y1 ←− t1

y2 ←− t2
δ
(1)
1

δ
(2)
1

δ
(2)
2

w
(2)
11

w
(2)
21

1. Take all neurons affected by neuron j .
2. Compute dot-product between their δ values and connecting weights.
3. Multiply result by derivative of activation function of neuron j .

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Backpropagation in a convolutional layer

I Now consider a
neuron in a
convolutional
layer.

I In the forward
pass, the blue
neuron affects all
neurons marked by
x in the next layer.

I Notice the flipped
role of weights.

x xx

�23 �22 �21

x x x

x x x

�33 �32 �31

�13 �12 �11

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Backpropagation in a convolutional layer

I In the backward pass, the blue neuron computes the dot-product between
δ values at the x-locations and connecting weights.

x x x
x xx
x x x

�88

�42 �43 �44

�32 �34�33

�11

�22 �23 �24

�13 �12 �11

�23 �21�22

�33 �32 �31

I The connecting weights are a horizontally and vertically flipped version of
the weights used in the forward convolution pass.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Backpropagation in a convolutional layer

I The adjacent red neuron affects a new but overlapping set of x-locations
using the same connecting weights.

x x x

x x

�22

x

x x x

�23 �24 �25

�33 �35

�22

�34

�43 �44 �45

�11

�88

�33 �32 �31

�13 �12 �11

�23 �21

�22

�22

I Since the weights are shared, the only difference is between the
x-locations.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Backpropagation in a convolutional layer

�13 �12 �11

�23 �21�22

�33 �32 �31 �33 �32 �31

�13 �12 �11

�23 �21

�22

�22

�33 �32 �31

�13 �12 �11

�21�23 �22

I Equivalent to convolving the δ-map by flipped weights.
I Therefore, backpropagation of δ values from a convolution layer is

1. just a convolution of the δ-map using flipped weights,
2. followed by multiplication with derivatives of activation functions.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Backpropagation in a convolutional layer

I What about boundary neurons? Who did they affect?

�22 �21

�11�12

�32

�13

�31

�23

�33

�12

�22 �21

�11

�32

�13

�31

�23

�33

�12

�22 �21

�11

I Equivalent to convolving the δ-map by flipped weights using
zero-padding.

I Therefore, backpropagation of δ values from a convolution layer is
1. just a convolution of the δ-map using flipped weights with

zero-padding,
2. followed by multiplication with derivatives of activation functions.

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Computing gradients in convolutional layer

I Consider a valid convolution of an n × n array with another n × n array.
I What will be the size of the result?
I Now consider a valid convolution of an n + 1× n + 1 array with an n × n

array.
I What will be the size of the result?

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Computing gradients in convolutional layer
1D case

I Backpropagation computes the per-neuron δ-maps only.
I Per-weight derivatives are computed as the product of a traditional

neuron’s δ value and its input.

y1 ←− t1

y2 ←− t2
δ
(1)
1

δ
(2)
1

δ
(2)
2

w
(2)
11

w
(2)
21

I Consider 1D convolutional layer with 3× 1 filter.

�1

�2

�3

�4

�5

�1

�2

�3

�4

�5

0

0

∂L

∂w1
= δ10+ δ2x1 + δ3x2 + δ4x3 + δ5x4

∂L

∂w2
= δ1x1 + δ2x2 + δ3x3 + δ4x4 + δ5x5

∂L

∂w3
= δ1x2 + δ2x3 + δ3x4 + δ4x5 + δ50


=⇒

[
δ1 δ2 δ3 δ4 δ5

]
? (valid)[

0 x1 x2 x3 x4 x5 0
]

I Verify that ∂L
∂b =

∑
δi .

Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

Computing gradients in convolutional layer
2D case

1. Zero-pad the input array with bK2 c zeros on each side2.
2. Perform valid convolution of the zero-padded input array by the δ-map of

the next layer to obtain a K × K array of derivatives of the convolution
weights.

�-map

Zero-padded	input

3. Derivative of bias is just the sum of the δ-map.

2Assuming square K × K convolution filter where K is odd
Nazar Khan Deep Learning

Neurons as Detectors CNN Convolutional layer Subsampling FC Layers CNN Backprop

CNN Variations

I There are lots of variations.
I Fully convolutional networks. No pooling and no fully connected layer.
I 1× 1 convolutions to reduce computations.
I Inception modules to combine multiple filter sizes.
I Residual blocks to avoid vanishing gradients.
I Depthwise separable convolutions to reduce parameters and computations.
I Lightweight and fast models (SqueezeNet, MobileNet, . . .) for edge

computing.
I Fast search over hyperparameters (EfficientNet).

Nazar Khan Deep Learning

	Neurons as Detectors
	CNN
	Convolutional layer
	Subsampling
	FC Layers
	CNN Backprop

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

