
CS-568 Deep Learning

Nazar Khan

PUCIT

Gradient Descent Variations

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

So far . . .

I Neural Networks are universal approximators.
I Backpropagation allows computation of derivatives in hidden layers.
I Gradient descent finds weights corresponding to local minimum of loss

surface.
I In this lecture: alternative methods of finding local minima of loss surface.

I First-order methods
I Rprop

I Second-order methods
I Quickprop

I Momentum-based first-order methods
I Momentum
I Nesterov Accelerated Gradient
I RMSprop
I ADAM

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Gradient Descent in Higher Dimensions

I Let ∆wτ+1 denote the step1 at time τ + 1.

w τ+1 = w τ + ∆w τ+1

I For gradient descent

∆wτ+1 = −η∇τwL

I For gradient descent in 1D,

∆w τ+1 = −η dL

dw

∣∣∣∣
τ

The only issue is determining step size η.

1Step 6= step size.
Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

−1 −0.5 0 0.5 1 −1
0

1
−1.5

−1

−0.5

0

x
y

f (x , y) = − exp
(
−(3

4x)2 − (5
4y)2)

−2 · 10−1−2 · 10−1

−2 · 10−1−2 · 10
−1

−3 · 10−1 −3 · 10
−1

−3 · 10−1
−3 · 10−1

−4 · 10−1 −4 · 10
−1

−4 · 10−1 −4 · 10−1

−5 · 10−1 −5 · 1
0−

1

−5 · 10−
1 −5 · 10−1

−6 · 10−1

−
6
· 1

0
−

1

−6 · 10−1 −6 · 1
0−

1

−7 · 10−
1

−
7 · 10 −

1

−7 · 10−1

−
7 · 10 −

1

−8 · 10 −1 −8 · 1
0−

1

−8 · 10−1

−9 · 10−1

−9 · 10−1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

Iso-contours of f (x , y)

A function that changes faster in y -direction.

I In higher dimensions, if
∣∣∣ ∂L∂wi

∣∣∣ >> ∣∣∣ ∂L∂wj

∣∣∣ then using the same η can result
in overshooting in the direction of wi and very slow convergence in the
direction of wj .

I Solution: separate step size ηi for each direction wi .

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Resilient Propagation (Rprop)

I In Rprop2, each direction is handled independently.
I Increase step size for direction i if current derivative has same sign as

previous derivative.
I Otherwise, you just overshot a minimum.

I So go back to previous location.
I Decrease step size for that direction.
I Update parameter with this smaller step.

ηi =


min(αηi , ηmax) if ∂L

∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

> 0

max(βηi , ηmin) if ∂L
∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

< 0

ηi otherwise

2Riedmiller and Braun, ‘A direct adaptive method for faster backpropagation learning:
The RPROP algorithm’.
Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Resilient Propagation (Rprop)

I Hyperparameters should follow the constraint α > 1 > β.
I Typical values are α = 1.2 and β = 0.5.

I Increase step size slowly but decrease quickly when you overshoot.

I Step sizes are bounded via ηmin and ηmax.
I Rprop converges much faster than gradient descent.
I But it works well when derivatives are accumulated over large batches.

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Taylor Series Approximation

I If values of a function f (a) and its derivatives f ′(a), f ′′(a), . . . are known
at a value a, then we can approximate f (x) for x close to a via the Taylor
series expansion

f (x) ≈ f (a)+(x−a)1 f
′(a)

1!
+(x−a)2 f

′′(a)

2!
+(x−a)3 f

′′′(a)

3!
+O((x−a)4)

I For example, for x around a = 0
I sin(x) ≈ x − x3

3! + x5

5! −
x7

7! + . . .

I ex ≈ 1 + x1

1! + x2

2! + x3

3! + x4

4! + . . .

I Using ∆x = x − a, Taylor series can be equivalently expressed as

f (a + ∆x) ≈ f (a) + (∆x)1 f
′(a)

1!
+ (∆x)2 f

′′(a)

2!
+ (∆x)3 f

′′′(a)

3!
+ O((∆x)4)

=
∞∑
n=0

1
n!
f n(a)(∆x)n

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Taylor Series Approximation
Not very useful for x not close to a

−6 −4 −2 2 4 6

−4

−2

2

4
sin(x)

3rd order approx. at 0
7th order approx. at 0

The sine function (blue) is closely approximated around 0 by its Taylor
polynomials. The 7th order approximation is good for a full period centered at
0. However, it becomes poor for |x − 0| > π.

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Taylor Series Approximation

I It is often convenient to use the first-order Taylor expansion

f (a + ∆x) ≈ f (a) + ∆xf ′(a)

or the second order Taylor expansion

f (a + ∆x) ≈ f (a) + ∆xf ′(a) +
1
2

(∆x)2f ′′(a)

I In d-dimensional input space

f (a + ∆x) ≈ f (a) + ∆xT∇f +
1
2

∆xTH∆x

where H ∈ Rd×d is the Hessian matrix composed from second derivatives.

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Newton’s Method for finding stationary points

I Starting from a0, we want to find a stationary point of f .
I Instead of actual function f , use a quadratic approximation (second-order

Taylor expansion) of f at a0.
I Find a step ∆x such that a0 + ∆x minimizes the quadratic approximation

of f .

d

d∆x

(
f (a0) + f ′(a0)∆x +

1
2
f ′′(a0)(∆x)2

)
= 0

f ′(a0) + f ′′(a0)∆x = 0

∆x = − f ′(a0)

f ′′(a0)

I Move to a1 = a0 + ∆x and repeat the process at a1.
I Continue until convergence to a stationary point an.

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Newton’s Method for finding stationary points

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f(x) = 6x5 5x4 4x3 + 3x2

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Newton’s Method for finding stationary points

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f(x) = 6x5 5x4 4x3 + 3x2

Quadratic approximation of f at 0.75

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Newton’s Method for finding stationary points

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f(x) = 6x5 5x4 4x3 + 3x2

Quadratic approximation of f at 1.00

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Newton’s Method for finding stationary points

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f(x) = 6x5 5x4 4x3 + 3x2

Quadratic approximation of f at 0.90

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Newton’s Method for finding stationary points

0.6 0.7 0.8 0.9 1.0 1.1 1.2

f(x) = 6x5 5x4 4x3 + 3x2

a0 a1a2a3

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Newton’s Method

I For weights of a neural network, Newton’s update corresponds to

w τ+1 = w τ −
(
∂2L

∂w2

)−1
∂L

∂w

I In other words, gradient descent step size η corresponds to inverse of
2nd-derivative.

I Division by 2nd-derivative can also be viewed as normalizing the gradient.
I In higher dimensions

wτ+1 = wτ −H−1∇wL

The inverse Hessian matrix normalizes the gradient vector.
I Complete Hessian matrix is rarely used because of its size and

computational cost.
I Common assumption: diagonal Hessian matrix.

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Quickprop

I Decouple all directions.
I Perform Newton updates in each direction.

w τ+1 = w τ −
(
∂2L

∂w2

)−1
∂L

∂w

I Approximate 2nd-derivative by finite difference of 1st-derivatives.

∂2L

∂w2
i

≈
∂L
∂wi

∣∣∣
τ
− ∂L

∂wi

∣∣∣
τ−1

∆w τ−1
i

I Leads to very fast convergence.
I Some instability where loss is non-convex since everything is based on

assumptions of convexity3.
3Quadratic approximation in Newton’s method
Fahlman, An empirical study of learning speed in back-propagation networks.

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Momentum Updates

Basic idea
I Keep track of oscillating directions.
I Increase step size in directions that converge smoothly.
I Decrease step size in directions that overshoot and oscillate.

Steps
1. Compute gradient step −η ∇wL|wτ at the current location wτ .
2. Add the scaled previous step β∆wτ to obtain a running average of the

step

∆wτ+1 = β∆wτ − η ∇wL|wτ

Typically β = 0.9.
3. Update parameters by the running average of the step

wτ+1 = wτ + ∆wτ+1

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Why does momentum work?

I Directions that oscillate will cancel each other out in the running average.
I So the running average will be small in magnitude.
I So the steps for oscillating directions will be smaller.

I Directions that are consistently converging will be reinforced.
I So the running average will be large in magnitude.
I So those directions will gain momentum by having larger and larger steps.

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Nesterov Accelerated Gradient

Same idea as momentum updates but with steps 1 and 2 swapped.
1. Extend the previous scaled step.

ŵ = wτ + β∆wτ

2. Compute gradient step at resultant location ŵ.

−η ∇wL|ŵ
3. Add previous scaled step and new gradient step to obtain the running

average of the step

∆wτ+1 = β∆wτ − η ∇wL|ŵ
4. Update parameters by the running average of the step

wτ+1 = wτ + ∆wτ+1

Nesterov’s method has been shown to converge faster than momentum
updates.
Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Momentum vs. Nesterov Momentum

Nesterov – Sometimes it is better make a correction after making an error.
Source: Bhiksha Raj

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

RMSprop

I Decouple each direction.
I We can compute the running average of the squared 1st-derivative in

direction i as

v̄ τi = γv̄ τ−1
i + (1− γ)

(
∂L

∂wi

)2

with initialization v̄0
i = 0.

I Root-mean-squared (RMS) value
√

v̄ τi + ε represents average magnitude
of 1st-derivative for direction i .
I High value indicates oscillating derivatives. So reduce step size.
I Low value indicates flat region. So increase step size.

I So divide step size by this average before performing gradient descent.

w τ
i = w τ−1

i − η√
v̄ τi + ε

∂L

∂wi

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Rprop vs RMSprop

Rprop

Multiplicatively increase step size
when derivative retains its sign.

η ← αη

Multiplicatively decrease step size
when derivative oscillates.

η ← βη

RMSprop

Multiplicatively increase/decrease
step size when average derivative
magnitude decreases/increases.

η ← η0√
v̄ + ε

Fixed multiplicative factors α and β in Rprop are replaced by adaptive
factor 1√

v̄+ε
in RMSprop.

Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

ADAM
RMSprop+Momentum

I RMSprop uses the current derivative.
I ADAM5 replaces current derivative by its running average.

m̄τ
i = δm̄τ−1

i + (1− δ)
∂L

∂wi

I Currently the most popular flavor of gradient descent.
I Statistics terminology:

I Average of random variable x is also called its 1st statistical moment E [x].
I Average of the square of a random variable is also called its 2nd uncentered

statistical moment E [x2].
I Average of the square of a centered random variable is also called its 2nd

statistical moment E [(x − µ)2] or variance.

5Kingma and Ba, ‘ADAM: A Method for Stochastic Optimization’.
Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

ADAM
RMSprop+Momentum

I Initialize moments m̄0
i = 0 and v̄0

i = 0.
I Compute 1st moment and 2nd uncentered moment of derivative

m̄τ
i = δm̄τ−1

i + (1− δ)
∂L

∂wi

v̄ τi = γv̄ τ−1
i + (1− γ)

(
∂L

∂wi

)2

I Correct for bias of initial moments (= 0) by scaling up in early iterations.

m̄τ
i =

m̄τ
i

1− δτ
and v̄ τi =

v̄ τi
1− γτ

I Perform update

w τ
i = w τ−1

i − η√
v̄ τi + ε

m̄τ
i

I Proposed hyperparameter values: η = 10−3, δ = 0.9, γ = 0.999, ε = 10−8.
Nazar Khan Deep Learning

GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

Summary

I For complex and non-convex loss functions of deep networks, vanilla
gradient descent can get stuck in poor local minima and saddle points.

I It can also converge very slowly.
I Different directions require different step sizes.
I Adaptive step sizes are very important.
I Most useful technique is to adapt step size based on recent trend of

1st-derivative.

Nazar Khan Deep Learning

	GD
	Rprop
	Taylor Series
	Quickprop
	Momentum
	Nesterov Momentum
	RMSprop
	ADAM

