
CS-568 Deep Learning

Nazar Khan

PUCIT

Gradient Descent Variations



GD Rprop Taylor Series Quickprop Momentum Nesterov Momentum RMSprop ADAM

So far . . .

I Neural Networks are universal approximators.
I Backpropagation allows computation of derivatives in hidden layers.
I Gradient descent finds weights corresponding to local minimum of loss

surface.
I In this lecture: alternative methods of finding local minima of loss surface.

I First-order methods
I Rprop

I Second-order methods
I Quickprop

I Momentum-based first-order methods
I Momentum
I Nesterov Accelerated Gradient
I RMSprop
I ADAM
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Gradient Descent in Higher Dimensions

I Let ∆wτ+1 denote the step1 at time τ + 1.

w τ+1 = w τ + ∆w τ+1

I For gradient descent

∆wτ+1 = −η∇τwL

I For gradient descent in 1D,

∆w τ+1 = −η dL

dw

∣∣∣∣
τ

The only issue is determining step size η.

1Step 6= step size.
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A function that changes faster in y -direction.

I In higher dimensions, if
∣∣∣ ∂L∂wi

∣∣∣ >> ∣∣∣ ∂L∂wj

∣∣∣ then using the same η can result
in overshooting in the direction of wi and very slow convergence in the
direction of wj .

I Solution: separate step size ηi for each direction wi .
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Resilient Propagation (Rprop)

I In Rprop2, each direction is handled independently.
I Increase step size for direction i if current derivative has same sign as

previous derivative.
I Otherwise, you just overshot a minimum.

I So go back to previous location.
I Decrease step size for that direction.
I Update parameter with this smaller step.

ηi =


min(αηi , ηmax) if ∂L

∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

> 0

max(βηi , ηmin) if ∂L
∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

< 0

ηi otherwise

2Riedmiller and Braun, ‘A direct adaptive method for faster backpropagation learning:
The RPROP algorithm’.
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Resilient Propagation (Rprop)

I Hyperparameters should follow the constraint α > 1 > β.
I Typical values are α = 1.2 and β = 0.5.

I Increase step size slowly but decrease quickly when you overshoot.

I Step sizes are bounded via ηmin and ηmax.
I Rprop converges much faster than gradient descent.
I But it works well when derivatives are accumulated over large batches.
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Taylor Series Approximation

I If values of a function f (a) and its derivatives f ′(a), f ′′(a), . . . are known
at a value a, then we can approximate f (x) for x close to a via the Taylor
series expansion

f (x) ≈ f (a)+(x−a)1 f
′(a)

1!
+(x−a)2 f

′′(a)

2!
+(x−a)3 f

′′′(a)

3!
+O((x−a)4)

I For example, for x around a = 0
I sin(x) ≈ x − x3

3! + x5

5! −
x7

7! + . . .

I ex ≈ 1 + x1

1! + x2

2! + x3

3! + x4

4! + . . .

I Using ∆x = x − a, Taylor series can be equivalently expressed as

f (a + ∆x) ≈ f (a) + (∆x)1 f
′(a)

1!
+ (∆x)2 f

′′(a)

2!
+ (∆x)3 f

′′′(a)

3!
+ O((∆x)4)

=
∞∑
n=0

1
n!
f n(a)(∆x)n
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Taylor Series Approximation
Not very useful for x not close to a
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3rd order approx. at 0
7th order approx. at 0

The sine function (blue) is closely approximated around 0 by its Taylor
polynomials. The 7th order approximation is good for a full period centered at
0. However, it becomes poor for |x − 0| > π.
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Taylor Series Approximation

I It is often convenient to use the first-order Taylor expansion

f (a + ∆x) ≈ f (a) + ∆xf ′(a)

or the second order Taylor expansion

f (a + ∆x) ≈ f (a) + ∆xf ′(a) +
1
2

(∆x)2f ′′(a)

I In d-dimensional input space

f (a + ∆x) ≈ f (a) + ∆xT∇f +
1
2

∆xTH∆x

where H ∈ Rd×d is the Hessian matrix composed from second derivatives.
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Newton’s Method for finding stationary points

I Starting from a0, we want to find a stationary point of f .
I Instead of actual function f , use a quadratic approximation (second-order

Taylor expansion) of f at a0.
I Find a step ∆x such that a0 + ∆x minimizes the quadratic approximation

of f .

d

d∆x

(
f (a0) + f ′(a0)∆x +

1
2
f ′′(a0)(∆x)2

)
= 0

f ′(a0) + f ′′(a0)∆x = 0

∆x = − f ′(a0)

f ′′(a0)

I Move to a1 = a0 + ∆x and repeat the process at a1.
I Continue until convergence to a stationary point an.
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Newton’s Method for finding stationary points
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Newton’s Method for finding stationary points
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Newton’s Method for finding stationary points
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Newton’s Method for finding stationary points
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Newton’s Method for finding stationary points
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f(x) = 6x5 5x4 4x3 + 3x2
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Newton’s Method

I For weights of a neural network, Newton’s update corresponds to

w τ+1 = w τ −
(
∂2L

∂w2

)−1
∂L

∂w

I In other words, gradient descent step size η corresponds to inverse of
2nd-derivative.

I Division by 2nd-derivative can also be viewed as normalizing the gradient.
I In higher dimensions

wτ+1 = wτ −H−1∇wL

The inverse Hessian matrix normalizes the gradient vector.
I Complete Hessian matrix is rarely used because of its size and

computational cost.
I Common assumption: diagonal Hessian matrix.
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Quickprop

I Decouple all directions.
I Perform Newton updates in each direction.

w τ+1 = w τ −
(
∂2L

∂w2

)−1
∂L

∂w

I Approximate 2nd-derivative by finite difference of 1st-derivatives.

∂2L

∂w2
i

≈
∂L
∂wi

∣∣∣
τ
− ∂L

∂wi

∣∣∣
τ−1

∆w τ−1
i

I Leads to very fast convergence.
I Some instability where loss is non-convex since everything is based on

assumptions of convexity3.
3Quadratic approximation in Newton’s method
Fahlman, An empirical study of learning speed in back-propagation networks.
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Momentum Updates

Basic idea
I Keep track of oscillating directions.
I Increase step size in directions that converge smoothly.
I Decrease step size in directions that overshoot and oscillate.

Steps
1. Compute gradient step −η ∇wL|wτ at the current location wτ .
2. Add the scaled previous step β∆wτ to obtain a running average of the

step

∆wτ+1 = β∆wτ − η ∇wL|wτ

Typically β = 0.9.
3. Update parameters by the running average of the step

wτ+1 = wτ + ∆wτ+1
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Why does momentum work?

I Directions that oscillate will cancel each other out in the running average.
I So the running average will be small in magnitude.
I So the steps for oscillating directions will be smaller.

I Directions that are consistently converging will be reinforced.
I So the running average will be large in magnitude.
I So those directions will gain momentum by having larger and larger steps.
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Nesterov Accelerated Gradient

Same idea as momentum updates but with steps 1 and 2 swapped.
1. Extend the previous scaled step.

ŵ = wτ + β∆wτ

2. Compute gradient step at resultant location ŵ.

−η ∇wL|ŵ
3. Add previous scaled step and new gradient step to obtain the running

average of the step

∆wτ+1 = β∆wτ − η ∇wL|ŵ
4. Update parameters by the running average of the step

wτ+1 = wτ + ∆wτ+1

Nesterov’s method has been shown to converge faster than momentum
updates.
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Momentum vs. Nesterov Momentum

Nesterov – Sometimes it is better make a correction after making an error.
Source: Bhiksha Raj
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RMSprop

I Decouple each direction.
I We can compute the running average of the squared 1st-derivative in

direction i as

v̄ τi = γv̄ τ−1
i + (1− γ)

(
∂L

∂wi

)2

with initialization v̄0
i = 0.

I Root-mean-squared (RMS) value
√

v̄ τi + ε represents average magnitude
of 1st-derivative for direction i .
I High value indicates oscillating derivatives. So reduce step size.
I Low value indicates flat region. So increase step size.

I So divide step size by this average before performing gradient descent.

w τ
i = w τ−1

i − η√
v̄ τi + ε

∂L

∂wi
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Rprop vs RMSprop

Rprop

Multiplicatively increase step size
when derivative retains its sign.

η ← αη

Multiplicatively decrease step size
when derivative oscillates.

η ← βη

RMSprop

Multiplicatively increase/decrease
step size when average derivative
magnitude decreases/increases.

η ← η0√
v̄ + ε

Fixed multiplicative factors α and β in Rprop are replaced by adaptive
factor 1√

v̄+ε
in RMSprop.
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ADAM
RMSprop+Momentum

I RMSprop uses the current derivative.
I ADAM5 replaces current derivative by its running average.

m̄τ
i = δm̄τ−1

i + (1− δ)
∂L

∂wi

I Currently the most popular flavor of gradient descent.
I Statistics terminology:

I Average of random variable x is also called its 1st statistical moment E [x ].
I Average of the square of a random variable is also called its 2nd uncentered

statistical moment E [x2].
I Average of the square of a centered random variable is also called its 2nd

statistical moment E [(x − µ)2] or variance.

5Kingma and Ba, ‘ADAM: A Method for Stochastic Optimization’.
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ADAM
RMSprop+Momentum

I Initialize moments m̄0
i = 0 and v̄0

i = 0.
I Compute 1st moment and 2nd uncentered moment of derivative

m̄τ
i = δm̄τ−1

i + (1− δ)
∂L

∂wi

v̄ τi = γv̄ τ−1
i + (1− γ)

(
∂L

∂wi

)2

I Correct for bias of initial moments (= 0) by scaling up in early iterations.

m̄τ
i =

m̄τ
i

1− δτ
and v̄ τi =

v̄ τi
1− γτ

I Perform update

w τ
i = w τ−1

i − η√
v̄ τi + ε

m̄τ
i

I Proposed hyperparameter values: η = 10−3, δ = 0.9, γ = 0.999, ε = 10−8.
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Summary

I For complex and non-convex loss functions of deep networks, vanilla
gradient descent can get stuck in poor local minima and saddle points.

I It can also converge very slowly.
I Different directions require different step sizes.
I Adaptive step sizes are very important.
I Most useful technique is to adapt step size based on recent trend of

1st-derivative.
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