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Multilayer Perceptrons and The Universal Approximation Theorem



Boolean Functions Classification Boundaries Continuous Functions

MLP and the XOR Problem

I We have seen that a single perceptron cannot solve the XOR problem.
I But 3 perceptrons arranged in 2 layers can solve it.
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I In this lecture, we will see that multilayer perceptrons (MLPs) can model
1. any Boolean function,
2. any classification boundary, and
3. any continuous function.
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MLPs and Boolean Functions

I A single perceptron can model the basis set {AND, OR, NOT} of logic
gates.

I All Boolean functions can be written using combinations of these basic
gates.

I Therefore, combinations of perceptrons (MLPs) can model all Boolean
functions.
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MLPs and Boolean Functions
Depth

X Y Z f

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

I A Boolean function of N variables has 2N different input
combinations.

I Disjunctive normal form (DNF) models the truth values
(1s only).

f = X̄ Ȳ Z + X̄Y Z̄ + XȲ Z̄ + XYZ

I DNF corresponds to OR of AND gates.
I Maximum possible ANDs in DNF is 2N−1.
I Each AND corresponds to one perceptron in the hidden

layer. So size of hidden layers will be exponential in N.
I OR corresponds to one perceptron in output layer.

Any Boolean function in N variables can be modelled by an MLP using
1 hidden layer of 2N−1 AND perceptrons followed by 1 OR perceptron.
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MLPs and Boolean Functions
Depth

I Function f on last slide was actually
XOR(X ,Y ,Z ). It required 2N−1 + 1
perceptrons using 2-layers only.

I X ⊕ Y ⊕ Z can be modelled using
pairwise XORs as (X ⊕ Y )⊕ Z .

I Corresponds to a deep MLP.
I Deep: more than 2 layers.

I Requires 3(N − 1) perceptrons.

Number of perceptrons required in deep
MLP is linear in N versus exponential in
N for single hidden layer MLP.
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MLPs and Classification Boundaries

Yellow region modelled by ANDing 4 linear classifiers (perceptrons). First layer
contains 4 perceptrons for modelling 4 lines and second layer contains a
perceptron for modelling an AND gate. Source: Bhiksha Raj
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MLPs and Classification Boundaries
Non-contiguous

Yellow region equals OR(polygon 1, polygon 2). Each polygon equals AND of
some lines. Each line equals 1 perceptron. Source: Bhiksha Raj

Since inputs and outputs are visible, all layers in-between are known as
hidden layers.
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MLPs and Classification Boundaries
Benefit of Depth

I Can the region in the last slide be modelled using a single hidden layer?
I Detour – can you model a circular boundary? Yes, via many lines.

Hexagon Dodecagon

I Circle = limk→∞ k-gon.
I As number of sides approaches ∞, regular polygons approximate circles.
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MLPs and Classification Boundaries
Benefit of Depth

I Any shape can be modelled by filling it with many circles, where each
circle is modelled via many lines.

I Precision increases as number of circles approaches ∞ and as number of
lines per circle approaches ∞.
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MLPs and Classification Boundaries
Benefit of Depth

I In other words, shape equals OR(many circles) where each circle equals
AND(many lines).

I Can be done with 1 really really wide hidden layer.

I Adding more layers exponentially reduces the number of required neurons.
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MLPs and Continuous Functions

I MLPs are universal approximators.

A two-layer network with linear outputs can uniformly approximate
any continuous function on a compact input domain to arbitrary
accuracy, provided that the network has a sufficiently large number
of hidden units.

I The next few slides present a proof of this statement.
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Generating a pulse using an MLP
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For α, β ∈ R, the pulse can be made infinitely wide when (β − α)→∞ and
infinitesimally thin when (β − α)→ 0.
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Generating a pulse using an MLP
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Since
∑

wixi + b ≥ 0 =⇒
∑

wixi ≥ −b, we have removed each neuron’s
bias b by setting −b as the firing threshold instead of 0.
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Combining MLP Pulsers
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Functions as pulse combinations
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Approximation using 12 pulsers. This is similar to approximation of area under
a function using integration as width of strip/pulse δ → 0.
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Functions as pulse combinations
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I More pulsers will yield better approximation of the function.

Universal Approximation Theorem
A linear combination of 2-layer perceptrons (pulsers) can approxi-
mate any function to arbitrary precision as long as we use enough
pulsers.

I At the cost of 3 perceptrons per pulse.
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Summary

I MLP with a single hidden layer is a universal approximator of
1. Boolean functions,
2. Classification boundaries, and
3. Continuous functions.

I Size of hidden layer needs to be exponential in number of inputs.
I Adding more layers exponentially reduces the number of neurons.
I Next lecture: learning of weights in a perceptron.
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