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Before we start

1. Capabilities of polynomials (lines, quadratics, cubics, . . . , degree M).
2. Capability can be reduced by restricting coefficients.
3. Everything is noisy.
4. Zero training error is bad. Over-fitting vs generalisation.
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Regularization in Neural Networks

I Over-fitting can be reduced via regularization.
1. Penalise magnitudes of weights: Ẽ (w) = E (w) + λ

2 ‖w‖
2.

2. Separately penalise each layer: Ẽ (w) = E (w) +
∑L

l=1
λl

2 ‖w
(l)‖2.

3. Dropout: During training, a randomly selected subset of activations are set
to zero within each layer.

4. Batch Normalization
5. Early stopping by checking E (w) on a validation set. Stop when error on

validation set starts increasing.
6. Data Augmentation: Training with augmented/transformed data.
7. Label Smoothing
8. Building invariance into the network structure (to be covered in the

Convolutional Neural Networks lecture).
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Droput

I One of the most used regularization techniques in neural nets.
I During training, a randomly selected subset of activations are set to zero

within each layer.
I This makes the neural network less powerful.
I Droput layer implementation is very simple.

I For each neuron (including inputs), generate a uniform random number
between 0 and 1.

I If the number is greater than α, set the neuron’s output to 0.
I Otherwise, don’t touch the neuron’s output.

I Probably of dropping out is 1− α.
I Remember which neurons were dropped so that gradients are also zeroed

out during backpropagation.
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Detour – Bagging

I Bagging is a popular ML meta-algorithm.
I Multiple ML models are trained separately to solve the same problem on

separate subsets of the training data.
I Final answer is the average of all models.

F (x) =
1
M

M∑
m=1

fm(x)

I Bagging results are usually better than the best individual model.
I Dropout can be viewed as bagging.
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Dropout as Bagging

I An architecture with n neurons can have 2n sub-architectures depending
on which neurons are switched off.

I Whenever a random subset of neurons is switched off, we are essentially
training only one of the 2n sub-architectures.

I At test time, use expected output of neuron, E [y ] = αh(a), i.e., bagging.
I Alternatives:

1. Push α into the next layer’s weights after training and do testing as before.

zk =
∑

wkjyj + bk

=
∑

wkjαh(aj) + bk =
∑

(αwkj)︸ ︷︷ ︸
w̃kj

h(aj) + bk

2. During training, multiply every output by 1
α and do testing as before.
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Dropout vs. DropConnect

Figure: Dropout vs. DropConnect2. Image taken from
https://cs.nyu.edu/~wanli/dropc/

2Wan et al., ‘Regularization of Neural Network using DropConnect’.
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Normalisation

I The importance of normalising inputs is well-understood in ML.
I Improves numerical stability and reduces training time.
I Makes all features equally important before learning takes place.

Normalisation of 2D data. Taken from
http://cs231n.github.io/neural-networks-2/
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Batch Normalisation

I In neural networks, a neuron’s input depends on previous neurons’ outputs.
I Those outputs can vary wildly during training as the weights are adjusted.
I Normalising the input sample is not enough.
I Later neuron’s input needs to be normalised as well.
I Inputs to every neuron in every layer must be normalised in a

differentiable manner.
I Normalisation is useless for learning if gradient ignores it.
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Batch Normalisation

I For the i-th input sample, a neuron passes its pre-activation ai into its
activation function h(ai ).

I For a minibatch B, the neuron will perform this step for each input
sample in B separately.

�1 ℎ( )�1

�|| ℎ( )�||

I Batchnorm takes place between this step.
I Each ai is converted to âi by looking at the other aj values in the

minibatch.
I Instead of ai , the new âi is passed into the acitvation function.
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Batch Normalisation

Consider a neuron’s pre-activations a1, a2, . . . , a|B| over a minibatch B.

1. Compute mean µ =
∑

ai
|B| and variance σ2 =

∑
(ai−µ)2
|B|−1 .

2. Standardize the pre-activations as ui = ai−µ
σ .

This makes the set u1, u2, . . . , u|B| have zero-mean and unit-variance.
3. Recover expressive power by learnable transformation âi = γui + β.

�1

�||

�

�1

�||

�̂ 
1

�̂ ||

�

�
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Batch Normalisation

The âi values that are now passed into the activation function will have
mean β and standard deviation γ, irrespective of original moments µ and
σ for the minibatch.

The whole process is differentiable and therefore suitable for gradient
descent.
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Benefits of BatchNorm

I Avoids vanishing gradients for sigmoidal non-linearities.
I Allows much higher learning rates and therefore dramatically speeds up

training.
I Reduces dependence on good weight initialisation.
I Regularizes the model and reduces the need for dropout.
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Why does Batchnorm work?

I The original paper3 posited that Batchnorm succeeded by reducing
internal covariate shift (ICS).
I ICS: Earlier neurons causing changes in distribution of inputs to subsequent

neurons.
I Causing later neurons to remain confused about which distribution to learn

over.
I Increases time to converge.

I Recent work4 suggests that BatchNorm’s might not even be reducing ICS.

I Infact, ICS might not even be a problem.
I Batchnorm succeeds because it has a regularization effect.
I It reduces the values and the gradients of the loss function.

3Ioffe and Szegedy, ‘Batch normalization: Accelerating deep network training by reducing
internal covariate shift’

4Santurkar et al., How Does Batch Normalization Help Optimization?
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Why does Batchnorm work?

Learning over smooth landscapes (right) is more stable and faster since we can
increase learning rate without over-shooting. This figure is illustrative – effect

of batchnorm is not as drastic.
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Why does Batchnorm work?

I Another5 suggestion is that it makes the learning problem easier.
I By decoupling the problems of estimation of direction and magnitude of

the weight vector.
I Direction of the weight vector is learned separately from its size.

5Kohler et al., Exponential convergence rates for Batch Normalization: The power of
length-direction decoupling in non-convex optimization
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Derivatives

I Consider the j-th neuron in the l-th layer.
I Let zi = h(âi ) be the neuron’s output for the i-th sample in minibatch B.

âi = γui + β

ui =
ai − µ√
σ2 + ε

µ =

∑
aj
|B|

and σ2 =

∑
(aj − µ)2

|B|
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Derivatives

I Recall that we can compute δi = ∂L
∂âi

via backpropagation as

δi = h′(âi )
K∑

k=1

δkw
(l+1)
kj

I So we will assume that we have already computed ∂L
∂âi

via
backpropagation.

I Then ∂L
∂ui

= ∂L
∂âi

∂âi
∂ui

= δiγ.
I Goal: Compute ∂L

∂ai
and proceed with backpropagation from there.

I Direct affectees of ai are: ui , µ and σ2.
I So treat loss function as L(ui (ai ), µ(ai ), σ(ai )).
I Using multivariate chain rule

∂L

∂ai
=

∂L

∂ui

∂ui
∂ai

+
∂L

∂µ

∂µ

∂ai
+

∂L

∂σ2
∂σ2

∂ai
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Derivatives

I Using multivariate chain rule

∂L

∂ai
=

∂L

∂ui

∂ui
∂ai

+
∂L

∂µ

∂µ

∂ai
+

∂L

∂σ2
∂σ2

∂ai

=
∂L

∂ui

∂ui
∂ai

+

(∑
B

∂L

∂uj

∂uj
∂µ

)
∂µ

∂ai
+

(∑
B

∂L

∂uj

∂uj
∂σ2

)
∂σ2

∂ai

=
∂L

∂ui

1√
σ2 + ε

+
∑
B

∂L

∂uj

−1√
σ2 + ε

1
|B|

+

∑
B

∂L

∂uj

(
−1
2

aj − µ
(σ2 + ε)

3
2

)2(ai − µ)
|B|

+
∑
B

2(aj − µ)
|B|

(
− 1
|B|

)
︸ ︷︷ ︸

=0


=

∂L

∂ui

1√
σ2 + ε

− 1
|B|
√
σ2 + ε

∑
B

∂L

∂uj
− (ai − µ)
|B|(σ2 + ε)

3
2

∑
B

∂L

∂uj
(aj − µ)
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Batchnorm at testing time

I Testing is not done on minibatches.
I But each neuron trained itself on batchnormed pre-activations.
I It expects batchnormed pre-activations at testing time as well.
I Solution: Once the network is trained, for each neuron, compute the

average µ, σ2 over the set S of all training minibatches.

µtest =
1
|S|
∑
B∈S

µ(B)

σ2
test =

|B|
|B| − 1

1
|S|
∑
B∈S

σ2(B)

I |B|
|B|−1 for computing unbiased estimator of variance.

I Use µtest, σtest to normalize every testing sample.
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So is Batchnorm legit?

I Around 2006, deep networks were successfully trained using greedy,
unsupervised, layer-wise pretraining.

I The method worked but was unintuitive. Why should pretraining avoid
vanishing gradients?

I We now know that greedy layer-wise pretraining is not necessary for deep
networks.

I Batchnorm has the same feel to it.
I It works (extremely well) but what’s the intuition behind making the i-th

training sample’s output dependent on other randomly chosen training
samples?

I The jury is still out on Batchnorm.
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Early Stopping

I Split some part of the training set into a validation set that will not be
used for training.

I During training, record loss on training as well as validation set.
I When validation loss starts increasing while training loss is still going

down, the model has started overfitting.
I So stop training at that point.

Validation
Training

Epochs

Loss
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Data Augmentation

I Augment training set with transformed versions of training samples.
I Domain specific data augmentations

I Images: Color, Geometry
I Text: Synonyms, Tense, Order
I Speech: Speed, Sound effects

https://github.com/albumentations-team/albumentations
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Data Augmentation

https://github.com/aleju/imgaug
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Label Smoothing

I Training adjusts the model to make outputs as close as possible to the
targets/labels.

I So if labels are smoothed a little, overfitting will be reduced.
I For example, if label 0 is mapped to 0.1 and 1 is mapped to 0.9, training

will converge early.
I Training procedure will not try as hard as before to output as close as

possible to 0 or 1.
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Summary

I All data contains noise.
I Given enough power, a neural network will model noise as well.
I Restricting the network’s power allows it to model the underlying

behaviour of data instead of noise.
I This reduces over-fitting on training data and improves generalisation of

the network on unseen data.
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