
CS-568 Deep Learning

Nazar Khan

PUCIT

Regularization in Neural Networks

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Before we start

1. Capabilities of polynomials (lines, quadratics, cubics, . . . , degree M).
2. Capability can be reduced by restricting coefficients.
3. Everything is noisy.
4. Zero training error is bad. Over-fitting vs generalisation.

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Regularization in Neural Networks

I Over-fitting can be reduced via regularization.
1. Penalise magnitudes of weights: Ẽ (w) = E (w) + λ

2 ‖w‖
2.

2. Separately penalise each layer: Ẽ (w) = E (w) +
∑L

l=1
λl

2 ‖w
(l)‖2.

3. Dropout: During training, a randomly selected subset of activations are set
to zero within each layer.

4. Batch Normalization
5. Early stopping by checking E (w) on a validation set. Stop when error on

validation set starts increasing.
6. Data Augmentation: Training with augmented/transformed data.
7. Label Smoothing
8. Building invariance into the network structure (to be covered in the

Convolutional Neural Networks lecture).

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Droput

I One of the most used regularization techniques in neural nets.
I During training, a randomly selected subset of activations are set to zero

within each layer.
I This makes the neural network less powerful.
I Droput layer implementation is very simple.

I For each neuron (including inputs), generate a uniform random number
between 0 and 1.

I If the number is greater than α, set the neuron’s output to 0.
I Otherwise, don’t touch the neuron’s output.

I Probably of dropping out is 1− α.
I Remember which neurons were dropped so that gradients are also zeroed

out during backpropagation.

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Detour – Bagging

I Bagging is a popular ML meta-algorithm.
I Multiple ML models are trained separately to solve the same problem on

separate subsets of the training data.
I Final answer is the average of all models.

F (x) =
1
M

M∑
m=1

fm(x)

I Bagging results are usually better than the best individual model.
I Dropout can be viewed as bagging.

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Dropout as Bagging

I An architecture with n neurons can have 2n sub-architectures depending
on which neurons are switched off.

I Whenever a random subset of neurons is switched off, we are essentially
training only one of the 2n sub-architectures.

I At test time, use expected output of neuron, E [y] = αh(a), i.e., bagging.
I Alternatives:

1. Push α into the next layer’s weights after training and do testing as before.

zk =
∑

wkjyj + bk

=
∑

wkjαh(aj) + bk =
∑

(αwkj)︸ ︷︷ ︸
w̃kj

h(aj) + bk

2. During training, multiply every output by 1
α and do testing as before.

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Dropout vs. DropConnect

Figure: Dropout vs. DropConnect2. Image taken from
https://cs.nyu.edu/~wanli/dropc/

2Wan et al., ‘Regularization of Neural Network using DropConnect’.
Nazar Khan Deep Learning

https://cs.nyu.edu/~wanli/dropc/

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Normalisation

I The importance of normalising inputs is well-understood in ML.
I Improves numerical stability and reduces training time.
I Makes all features equally important before learning takes place.

Normalisation of 2D data. Taken from
http://cs231n.github.io/neural-networks-2/

Nazar Khan Deep Learning

http://cs231n.github.io/neural-networks-2/

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Batch Normalisation

I In neural networks, a neuron’s input depends on previous neurons’ outputs.
I Those outputs can vary wildly during training as the weights are adjusted.
I Normalising the input sample is not enough.
I Later neuron’s input needs to be normalised as well.
I Inputs to every neuron in every layer must be normalised in a

differentiable manner.
I Normalisation is useless for learning if gradient ignores it.

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Batch Normalisation

I For the i-th input sample, a neuron passes its pre-activation ai into its
activation function h(ai).

I For a minibatch B, the neuron will perform this step for each input
sample in B separately.

�1 ℎ()�1

�|| ℎ()�||

I Batchnorm takes place between this step.
I Each ai is converted to âi by looking at the other aj values in the

minibatch.
I Instead of ai , the new âi is passed into the acitvation function.

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Batch Normalisation

Consider a neuron’s pre-activations a1, a2, . . . , a|B| over a minibatch B.

1. Compute mean µ =
∑

ai
|B| and variance σ2 =

∑
(ai−µ)2
|B|−1 .

2. Standardize the pre-activations as ui = ai−µ
σ .

This makes the set u1, u2, . . . , u|B| have zero-mean and unit-variance.
3. Recover expressive power by learnable transformation âi = γui + β.

�1

�||

�

�1

�||

�̂
1

�̂ ||

�

�

� �

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Batch Normalisation

The âi values that are now passed into the activation function will have
mean β and standard deviation γ, irrespective of original moments µ and
σ for the minibatch.

The whole process is differentiable and therefore suitable for gradient
descent.

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Benefits of BatchNorm

I Avoids vanishing gradients for sigmoidal non-linearities.
I Allows much higher learning rates and therefore dramatically speeds up

training.
I Reduces dependence on good weight initialisation.
I Regularizes the model and reduces the need for dropout.

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Why does Batchnorm work?

I The original paper3 posited that Batchnorm succeeded by reducing
internal covariate shift (ICS).
I ICS: Earlier neurons causing changes in distribution of inputs to subsequent

neurons.
I Causing later neurons to remain confused about which distribution to learn

over.
I Increases time to converge.

I Recent work4 suggests that BatchNorm’s might not even be reducing ICS.

I Infact, ICS might not even be a problem.
I Batchnorm succeeds because it has a regularization effect.
I It reduces the values and the gradients of the loss function.

3Ioffe and Szegedy, ‘Batch normalization: Accelerating deep network training by reducing
internal covariate shift’

4Santurkar et al., How Does Batch Normalization Help Optimization?
Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Why does Batchnorm work?

Learning over smooth landscapes (right) is more stable and faster since we can
increase learning rate without over-shooting. This figure is illustrative – effect

of batchnorm is not as drastic.

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Why does Batchnorm work?

I Another5 suggestion is that it makes the learning problem easier.
I By decoupling the problems of estimation of direction and magnitude of

the weight vector.
I Direction of the weight vector is learned separately from its size.

5Kohler et al., Exponential convergence rates for Batch Normalization: The power of
length-direction decoupling in non-convex optimization
Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Derivatives

I Consider the j-th neuron in the l-th layer.
I Let zi = h(âi) be the neuron’s output for the i-th sample in minibatch B.

âi = γui + β

ui =
ai − µ√
σ2 + ε

µ =

∑
aj
|B|

and σ2 =

∑
(aj − µ)2

|B|

�1

�||

�

�1

�||

�̂
1

�̂ ||

�

�

� �

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Derivatives

I Recall that we can compute δi = ∂L
∂âi

via backpropagation as

δi = h′(âi)
K∑

k=1

δkw
(l+1)
kj

I So we will assume that we have already computed ∂L
∂âi

via
backpropagation.

I Then ∂L
∂ui

= ∂L
∂âi

∂âi
∂ui

= δiγ.
I Goal: Compute ∂L

∂ai
and proceed with backpropagation from there.

I Direct affectees of ai are: ui , µ and σ2.
I So treat loss function as L(ui (ai), µ(ai), σ(ai)).
I Using multivariate chain rule

∂L

∂ai
=

∂L

∂ui

∂ui
∂ai

+
∂L

∂µ

∂µ

∂ai
+

∂L

∂σ2
∂σ2

∂ai

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Derivatives

I Using multivariate chain rule

∂L

∂ai
=

∂L

∂ui

∂ui
∂ai

+
∂L

∂µ

∂µ

∂ai
+

∂L

∂σ2
∂σ2

∂ai

=
∂L

∂ui

∂ui
∂ai

+

(∑
B

∂L

∂uj

∂uj
∂µ

)
∂µ

∂ai
+

(∑
B

∂L

∂uj

∂uj
∂σ2

)
∂σ2

∂ai

=
∂L

∂ui

1√
σ2 + ε

+
∑
B

∂L

∂uj

−1√
σ2 + ε

1
|B|

+

∑
B

∂L

∂uj

(
−1
2

aj − µ
(σ2 + ε)

3
2

)2(ai − µ)
|B|

+
∑
B

2(aj − µ)
|B|

(
− 1
|B|

)
︸ ︷︷ ︸

=0

=

∂L

∂ui

1√
σ2 + ε

− 1
|B|
√
σ2 + ε

∑
B

∂L

∂uj
− (ai − µ)
|B|(σ2 + ε)

3
2

∑
B

∂L

∂uj
(aj − µ)

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Batchnorm at testing time

I Testing is not done on minibatches.
I But each neuron trained itself on batchnormed pre-activations.
I It expects batchnormed pre-activations at testing time as well.
I Solution: Once the network is trained, for each neuron, compute the

average µ, σ2 over the set S of all training minibatches.

µtest =
1
|S|
∑
B∈S

µ(B)

σ2
test =

|B|
|B| − 1

1
|S|
∑
B∈S

σ2(B)

I |B|
|B|−1 for computing unbiased estimator of variance.

I Use µtest, σtest to normalize every testing sample.

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

So is Batchnorm legit?

I Around 2006, deep networks were successfully trained using greedy,
unsupervised, layer-wise pretraining.

I The method worked but was unintuitive. Why should pretraining avoid
vanishing gradients?

I We now know that greedy layer-wise pretraining is not necessary for deep
networks.

I Batchnorm has the same feel to it.
I It works (extremely well) but what’s the intuition behind making the i-th

training sample’s output dependent on other randomly chosen training
samples?

I The jury is still out on Batchnorm.

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Early Stopping

I Split some part of the training set into a validation set that will not be
used for training.

I During training, record loss on training as well as validation set.
I When validation loss starts increasing while training loss is still going

down, the model has started overfitting.
I So stop training at that point.

Validation
Training

Epochs

Loss

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Data Augmentation

I Augment training set with transformed versions of training samples.
I Domain specific data augmentations

I Images: Color, Geometry
I Text: Synonyms, Tense, Order
I Speech: Speed, Sound effects

https://github.com/albumentations-team/albumentations

Nazar Khan Deep Learning

https://github.com/albumentations-team/albumentations

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Data Augmentation

https://github.com/aleju/imgaug

Nazar Khan Deep Learning

https://github.com/aleju/imgaug

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Label Smoothing

I Training adjusts the model to make outputs as close as possible to the
targets/labels.

I So if labels are smoothed a little, overfitting will be reduced.
I For example, if label 0 is mapped to 0.1 and 1 is mapped to 0.9, training

will converge early.
I Training procedure will not try as hard as before to output as close as

possible to 0 or 1.

Nazar Khan Deep Learning

Regularization Dropout Batchnorm Early Stopping Data Augmentation Label Smoothing

Summary

I All data contains noise.
I Given enough power, a neural network will model noise as well.
I Restricting the network’s power allows it to model the underlying

behaviour of data instead of noise.
I This reduces over-fitting on training data and improves generalisation of

the network on unseen data.

Nazar Khan Deep Learning

	Regularization
	Dropout
	Batchnorm
	Early Stopping
	Data Augmentation
	Label Smoothing

