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Dynamic Data RNN BPTT Stability Benefit of RNN Variations

Everything should be made as simple as possible,
but no simpler.
Albert Einstein

Understanding Recurrent Neural Networks requires some effort and a cor-
rect perspective. Do not expect them to be as simple as linear regression.
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Static vs. Dynamic Inputs

I Static signals, such as an image, do not change over time.
I Ordered with respect to space.
I Output depends on current input.

I Dynamic signals, such as text, audio, video or stock price change over
time.
I Ordered with respect to time.
I Output depends on current input as well as past (or even future) inputs.
I Also called temporal, sequential or time-series data.
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Context in Text

The Taj ____ was commissioned by Shah Jahan in 1631, to
be built in the memory of ___ wife Mumtaz Mahal, who died
on 17 June that year, giving birth to their 14th child, Gauhara
Begum. Construction started in 1632, and the mausoleum was
completed ___ 1643.
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Time-series Data

I A single input will be a series of vectors x1, x2, . . . , xT .
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Input component at time t forward propagated through a network.
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Representational Shortcut 1 – Space Folding
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Each box represents a layer of neurons.
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Recurrent Neural Networks
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I A recurrent neural network (RNN) makes hidden state at time t directly
dependent on the hidden state at time t − 1 and therefore indirectly on all
previous times.

I Output yt depends on all that the network has already seen so far.
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Representational Shortcut 2 – Time Folding
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Recurrent Neural Networks

3 sets of
weights

�
0

�(�)

�
1

�(�)

�(�)

�
11 y(t) = f (

z1(t)︷ ︸︸ ︷
W 1h(t) + b1)

h(t) = tanh(W 0x(t) +W 11h(t−1) + b0︸ ︷︷ ︸
z0(t)

)
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Sequence Mappings

One-to-many Many-to-one

Many-to-many Many-to-many delayed
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Loss Functions for Sequences

I For recurrent nets, loss is between series of output and target vectors.
That is L({y1, . . . , yT}, {t1, . . . , tT}).
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Forward propagation in an RNN unfolded in time.
I Notice that loss L can be computed only after yT has been computed.
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Loss Functions for Sequences

I Loss is not necessarily decomposable.
I In the following, we will assume decomposable loss L =

∑T
t=1 L(yt , tt).

I In both cases, as long as ∂L
∂yt has been computed, backpropagation can

proceed.

�(1) �(2)

�(1) �(2)

�(1) �(2)

�(�)

�(�)

�(�)

�(�−1)

L

Loss/divergence function , , . . . ,�(1) �(2) �(�)

Nazar Khan Deep Learning



Dynamic Data RNN BPTT Stability Benefit of RNN Variations

Backpropagation Through Time (BPTT)
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Forward propagation in an RNN unfolded in time. Recurrence between hidden
states through pre-activation z(t) is shown in red.
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BPTT
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Forward propagation in an RNN unfolded in time. Recurrence between hidden
states through pre-activation z(t) is shown in red.
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BPTT – Notational Clarity

I For notational clarity, at layer l , we will denote the
pre-activation by zl and activation by hl .

I So output layer y will be denoted by hL in an
L-layer network.

I Input will be denoted by h0.
I So forward propagation entails

h0 → z1 → h1 · · · → zL−1 → hL−1 → zL → hL.
I For 2 layer network

h2,T = f (W 1h1,T + b1)

h1,T = tanh(z1,T )

z1,T = W 0h0,T +W 11h1,T−1 + b0
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BPTT – Notational Clarity
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Multivariate Chain Rule

I The chain rule of differentiation states

df (u(x))

dx
=

df

du

du

dx

when f depends on x through u().
I The multivariate chain rule of differentiation states

df (u(x),v(x))

dx
=

∂f

∂u

du

dx
+
∂f

∂v

dv

dx

when f depends on x through u() and through v().
I Backpropagation is just an application of the multivariate chain rule.
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BPTT

I We need 5 derivatives:
1. ∇W 1L ∈ RM×K

2. ∇b1L ∈ R1×K

3. ∇W 11L ∈ RM×M

4. ∇W 0L ∈ RD×M

5. ∇b0L ∈ R1×M
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BPTT
Derivative number 1 : ∇W 1L

I Notice that W 1 affects loss L through z(2,t) at each time t.

L(z(2,1)(W 1)︸ ︷︷ ︸
t=1

, z(2,2)(W 1)︸ ︷︷ ︸
t=2

, . . . , z(2,T )(W 1)︸ ︷︷ ︸
t=T

)

I Influence diagram
I Using the multivariate chain rule over time

∇W 1L︸ ︷︷ ︸
M×K

=
T∑
t=1

∇z(2,t)L︸ ︷︷ ︸
1×K

∇W 1z(2,t)︸ ︷︷ ︸
K×(M×K)

=
1∑

t=T

h(1,t)︸ ︷︷ ︸
M×1

∇z(2,t)L︸ ︷︷ ︸
1×K

I Computation of ∇z(2,t)L is described next.
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BPTT
∇z(2,t)L

I The derivatives of loss L w.r.t pre-activations z(2,t) can be computed as

∇z(2,t)L︸ ︷︷ ︸
1×K

= ∇h(2,t)L︸ ︷︷ ︸
1×K

∇z(2,t)h
(2,t)︸ ︷︷ ︸

K×K

= ∇h(2,t)L


∂z1h1 ∂z2h1 . . . ∂zK h1
∂z1h2 ∂z2h2 . . . ∂zK h2
...

...
. . .

...
∂z1hK ∂z2hK . . . ∂zK hK


(2,t)

︸ ︷︷ ︸
Jacobian matrix

I The Jacobian matrix is the derivative of outputs with respect to inputs.
I In 1D, the term dy

dx is the 1× 1 Jacobian matrix of y = f (x).
I For scalar activation functions such as logistic sigmoid, tanh, ReLU, the

Jacobian matrix is diagonal.
I For vector activation functions such as softmax, the Jacobian matrix is

full.
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BPTT
Derivative number 2 : ∇b1L

I Following the same reasoning as used for ∇W 1L above, we can compute

∇b1L︸ ︷︷ ︸
1×K

=
1∑

t=T

∇z(2,t)L︸ ︷︷ ︸
1×K

where we have used the fact that ∇b1z(2,t) = IK .
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BPTT
Derivative number 3 : ∇W 11L

I Notice that W 11 affects loss L through z(1,t) at each time t.

L(z(1,1)(W 11)︸ ︷︷ ︸
t=1

, z(1,2)(W 11)︸ ︷︷ ︸
t=2

, . . . , z(1,T )(W 11)︸ ︷︷ ︸
t=T

)

I Influence diagram
I Using the multivariate chain rule over time

∇W 11L︸ ︷︷ ︸
M×M

=
T∑
t=1

∇z(1,t)L︸ ︷︷ ︸
1×M

∇W 11z(1,t)︸ ︷︷ ︸
M×(M×M)

=
1∑

t=T

h(1,t−1)︸ ︷︷ ︸
M×1

∇z(1,t)L︸ ︷︷ ︸
1×M

I Computation of ∇z(1,t)L is described next.
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BPTT
∇z(1,t)L

I The derivatives of loss L w.r.t pre-activations z(1,t) can be computed as

∇z(1,t)L︸ ︷︷ ︸
1×M

= ∇h(1,t)L︸ ︷︷ ︸
1×M

∇h(1,t)z(1,t)︸ ︷︷ ︸
M×M

= ∇h(1,t)L


∂z1h1 ∂z2h1 . . . ∂zMh1
∂z1h2 ∂z2h2 . . . ∂zMh2
...

...
. . .

...
∂z1hM ∂z2hM . . . ∂zMhM


(1,t)

︸ ︷︷ ︸
Jacobian matrix

I Computation of ∇h(1,t)L is described next.
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BPTT
∇h(1,t)L

I Notice that h(1,t) affects loss L
1. through z(2,t) at each time t, and
2. through z(1,t+1) at each time t + 1.

I Influence diagram
I Using the multivariate chain rule over these 2 time steps

∇h(1,t)L︸ ︷︷ ︸
1×M

= ∇z(2,t)L∇h(1,t)z(2,t) +∇z(1,t+1)L∇h(1,t)z(1,t+1)︸ ︷︷ ︸
Not required when t = T

= ∇z(2,t)L︸ ︷︷ ︸
1×K

W 1︸︷︷︸
K×M

+∇z(1,t+1)L︸ ︷︷ ︸
1×M

W 11︸︷︷︸
M×M
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BPTT
Derivative number 4 : ∇W 0L

I Notice that W 0 affects loss L through z(1,t) at each time t.

L(z(1,1)(W 0)︸ ︷︷ ︸
t=1

, z(1,2)(W 0)︸ ︷︷ ︸
t=2

, . . . , z(1,T )(W 0)︸ ︷︷ ︸
t=T

)

I Influence diagram
I Using the multivariate chain rule over time

∇W 0L︸ ︷︷ ︸
D×M

=
T∑
t=1

∇z(1,t)L︸ ︷︷ ︸
1×M

∇W 0z(1,t)︸ ︷︷ ︸
M×(D×M)

=
1∑

t=T

h(0,t)︸ ︷︷ ︸
D×1

∇z(1,t)L︸ ︷︷ ︸
1×M
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BPTT
Derivative number 5 : ∇b0L

I Following the same reasoning as used for ∇W 0L above, we can compute

∇b0L︸ ︷︷ ︸
1×M

=
1∑

t=T

∇z(1,t)L︸ ︷︷ ︸
1×M

where we have used the fact that ∇b0z(1,t) = IM .

Now we have all 5 derivatives required to train an RNN with 1 hidden
layer.

Please note that all 5 derivatives will be transposed to obtain the gradients
used in gradient descent.
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Satbility issues

I Even a 1-hidden layer RNN is a very deep network.
I Viewed in time, an RNN is as deep as the number of time steps.
I Suffer from vanishing gradients.
I Also suffer from exploding gradients.
I Even during forward propagation, depending on the largest eigenvalue of

the recurrent weight matrix W 11, input at time t
I is either forgotten very soon,
I or explodes to very large values.

I So, in practice, RNNs do not have long-term memory. Solution: LSTM
(next lecture).
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Benefit of RNN over standard MLP

I N-bit addition (TBD)
I N-bit XOR (TBD)
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RNN Variations

1 hidden state 2 hidden states Skip connections
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Bidirectional RNN

TBD
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