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Dynamic Data RNN BPTT

Everything should be made as simple as possible,
but no simpler.
Albert Einstein

Understanding Recurrent Neural Networks requires some effort and a cor-
rect perspective. Do not expect them to be as simple as linear regression.
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Static vs. Dynamic Inputs

� Static signals, such as an image, do not change over time.
� Ordered with respect to space.
� Output depends on current input.

� Dynamic signals, such as text, audio, video or stock price change over
time.
� Ordered with respect to time.
� Output depends on current input as well as past (or even future) inputs.
� Also called temporal, sequential or time-series data.
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Context in Text

The Taj ____ was commissioned by Shah Jahan in 1631, to
be built in the memory of ___ wife Mumtaz Mahal, who died
on 17 June that year, giving birth to their 14th child, Gauhara
Begum. Construction started in 1632, and the mausoleum was
completed ___ 1643.
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Time-series Data

� A single input will be a series of vectors x1, x2, . . . , xT .
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Input component at time t forward propagated through a network.
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Representational Shortcut 1 – Space Folding
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Each box represents a layer of neurons.
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Recurrent Neural Networks
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� A recurrent neural network (RNN) makes hidden state at time t directly
dependent on the hidden state at time t − 1 and therefore indirectly on all
previous times.

� Output yt depends on all that the network has already seen so far.
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Representational Shortcut 2 – Time Folding
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Recurrent Neural Networks

3 sets of
weights
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11 y(t) = f (

z1(t)
� �� �
W 1h(t) + b1)

h(t) = tanh(W 0x(t) +W 11h(t−1) + b0� �� �
z0(t)

)
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Sequence Mappings

One-to-many Many-to-one

Many-to-many Many-to-many delayed
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Loss Functions for Sequences

� For recurrent nets, loss is between series of output and target vectors.
That is L({y1, . . . , yT}, {t1, . . . , tT}).
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Forward propagation in an RNN unfolded in time.
� Notice that loss L can be computed only after yT has been computed.
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Loss Functions for Sequences

� Loss is not necessarily decomposable.
� In the following, we will assume decomposable loss L =

�T
t=1 L(yt , tt).

� In both cases, as long as ∂L
∂yt has been computed, backpropagation can

proceed.
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Backpropagation Through Time (BPTT)
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Forward propagation in an RNN unfolded in time. Recurrence between hidden
states through pre-activation z(t) is shown in red.
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BPTT
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Forward propagation in an RNN unfolded in time. Recurrence between hidden
states through pre-activation z(t) is shown in red.
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BPTT – Notational Clarity

� For notational clarity, at layer l , we will denote the
pre-activation by zl and activation by hl .

� So output layer y will be denoted by hL in an
L-layer network.

� Input will be denoted by h0.
� So forward propagation entails

h0 → z1 → h1 · · · → zL−1 → hL−1 → zL → hL.
� For 2 layer network

h2,T = f (W 1h1,T + b1)

h1,T = tanh(z1,T )

z1,T = W 0h0,T +W 11h1,T−1 + b0
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BPTT – Notational Clarity
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Multivariate Chain Rule

� The chain rule of differentiation states

df (u(x))

dx
=

df

du

du

dx

when f depends on x through u().
� The multivariate chain rule of differentiation states

df (u(x),v(x))

dx
=

∂f

∂u

du

dx
+
∂f

∂v

dv

dx

when f depends on x through u() and through v().
� Backpropagation is just an application of the multivariate chain rule.
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BPTT

� After dropping L,T for clarity and using the multivariate chain rule

∂L
∂zi

=
∂L
∂h1

∂h1

∂zi
+

∂L
∂h2

∂h2

∂zi
+ · · ·+ ∂L

∂hK

∂hK
∂zi

=
�
∂L
∂h1

∂L
∂h2

. . . ∂L
∂hK

�

� �� �
∇hL




∂h1
∂zi
∂h2
∂zi
...

∂hK
∂zi




� �� �
∇zi

h

= ∇hL∇zih

Nazar Khan Deep Learning



Dynamic Data RNN BPTT

BPTT

� This allows us to write

∇zL����
1×K

=
�
∂L
∂z1

∂L
∂z2

. . . ∂L
∂zK

�

=
�
∇hL∇z1h ∇hL∇z2h . . . ∇hL∇zKh

�

= ∇hL����
1×K

�
∇z1h ∇z2h . . . ∇zKh

�
� �� �

K×K

= ∇hL∇zh

where

∇zh =




∂h1
∂z1

∂h1
∂z2

. . . ∂h1
∂zK

∂h2
∂z1

∂h2
∂z2

. . . ∂h2
∂zK

...
...

. . .
...

∂hK
∂z1

∂hK
∂z2

. . . ∂hK
∂zK




is the K × K Jacobian matrix of h with respect to z.
� For simple, per-component activation functions (tanh, ReLU), Jacobian

will be diagonal. For softmax, it will be dense.
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BPTT

Derivative of loss L for any time t w.r.t weights of any layer l can
be computed as

∇Wl−1L� �� �
K×M

���
t
=



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. . . ∂L
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BPTT

Loss L for time t depends on W l−1 through zl ,t

∇Wl−1L� �� �
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BPTT

∇Wl−1L� �� �
K×M
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BPTT

� Start from final output hL,T = f
�
zL,T

�
. Assuming ∇hL,TL

has been computed,

∇zL,TL� �� �
1×K

= ∇hL,TL� �� �
1×K

∇zL,T hL,T

� �� �
K×K

� Derivative of loss w.r.t weights of final layer at time T can
now be computed as

∇WL−1L� �� �
K×ML−1

���
T
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� Viewed as a function of W L−1, loss can be written over time as

L
�
zL,1(W L−1), zL,2(W L−1), . . . , zL,T (W L−1)

�

� Therefore, using multivariate chain rule
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BPTT

� Similarly, for each layer l from 1 to L

∇Wl−1L =
t=T�

1

�
∇Tr

zl,tL
��

hl−1,t
�Tr

(1)
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BPTT

∇hL−1L
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T� �� �
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RNN Variations

1 hidden state 2 hidden states Skip connections
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