
CS-568 Deep Learning

Nazar Khan

PUCIT

Recurrent Neural Networks

Dynamic Data RNN BPTT

Everything should be made as simple as possible,
but no simpler.
Albert Einstein

Understanding Recurrent Neural Networks requires some effort and a cor-
rect perspective. Do not expect them to be as simple as linear regression.

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

Static vs. Dynamic Inputs

� Static signals, such as an image, do not change over time.
� Ordered with respect to space.
� Output depends on current input.

� Dynamic signals, such as text, audio, video or stock price change over
time.
� Ordered with respect to time.
� Output depends on current input as well as past (or even future) inputs.
� Also called temporal, sequential or time-series data.

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

Context in Text

The Taj ____ was commissioned by Shah Jahan in 1631, to
be built in the memory of ___ wife Mumtaz Mahal, who died
on 17 June that year, giving birth to their 14th child, Gauhara
Begum. Construction started in 1632, and the mausoleum was
completed ___ 1643.

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

Time-series Data

� A single input will be a series of vectors x1, x2, . . . , xT .

ℎ
()

1
ℎ
()

2
ℎ
()

∈()
ℝ

()

1

()

2

()

()

1

()

2

()

∈()
ℝ

∈()
ℝ

Input component at time t forward propagated through a network.

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

Representational Shortcut 1 – Space Folding

ℎ
()

1
ℎ
()

2
ℎ
()

∈()
ℝ

()

1

()

2

()

()

1

()

2

()

∈()
ℝ

∈()
ℝ

Folding
====⇒
in space

∈
0

ℝ
×

()

∈
1

ℝ
×

()

()

Each box represents a layer of neurons.

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

Recurrent Neural Networks

(1) (2)

(1) (2)

(1) (2)

He is

()

()

()

school

Adding time

(−1)

� A recurrent neural network (RNN) makes hidden state at time t directly
dependent on the hidden state at time t − 1 and therefore indirectly on all
previous times.

� Output yt depends on all that the network has already seen so far.
Nazar Khan Deep Learning

Dynamic Data RNN BPTT

Representational Shortcut 2 – Time Folding

(1) (2)

(1) (2)

(1) (2)

He is

()

()

()

school

Adding time

(−1)

Folding
====⇒
in time

()

()

()

(−1)

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

Recurrent Neural Networks

3 sets of
weights

0

()

1

()

()

11 y(t) = f (

z1(t)
� �� �
W 1h(t) + b1)

h(t) = tanh(W 0x(t) +W 11h(t−1) + b0� �� �
z0(t)

)

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

Sequence Mappings

One-to-many Many-to-one

Many-to-many Many-to-many delayed

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

Loss Functions for Sequences

� For recurrent nets, loss is between series of output and target vectors.
That is L({y1, . . . , yT}, {t1, . . . , tT}).

(1) (2)

(1) (2)

(1) (2)

()

()

()

(−1)

L

Loss/divergence function , , . . . ,(1) (2) ()

Forward propagation in an RNN unfolded in time.
� Notice that loss L can be computed only after yT has been computed.

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

Loss Functions for Sequences

� Loss is not necessarily decomposable.
� In the following, we will assume decomposable loss L =

�T
t=1 L(yt , tt).

� In both cases, as long as ∂L
∂yt has been computed, backpropagation can

proceed.

(1) (2)

(1) (2)

(1) (2)

()

()

()

(−1)

L

Loss/divergence function , , . . . ,(1) (2) ()

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

Backpropagation Through Time (BPTT)

(1)

(1)

(2)

(2)

11

(1)

(2)

(1) (2)

(−1)

(−1)

(−1)

(−1)

Loss/divergence function , , . . . ,(1) (2) ()

()

()

()

()

11

L

11

11

(−2)

11

(0)

Forward propagation in an RNN unfolded in time. Recurrence between hidden
states through pre-activation z(t) is shown in red.

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

BPTT

(1)

(1)

(2)

(2)

11

(1)

(2)

(1) (2)

(−1)

(−1)

(−1)

(−1)

Loss/divergence function , , . . . ,(1) (2) ()

()

()

()

()

11

L

11

11

(−2)

11

(0)

= (+)() ()

= tanh()() ()

= + +() () 11(−1)

Forward propagation in an RNN unfolded in time. Recurrence between hidden
states through pre-activation z(t) is shown in red.

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

BPTT – Notational Clarity

� For notational clarity, at layer l , we will denote the
pre-activation by zl and activation by hl .

� So output layer y will be denoted by hL in an
L-layer network.

� Input will be denoted by h0.
� So forward propagation entails

h0 → z1 → h1 · · · → zL−1 → hL−1 → zL → hL.
� For 2 layer network

h2,T = f (W 1h1,T + b1)

h1,T = tanh(z1,T)

z1,T = W 0h0,T +W 11h1,T−1 + b0

0

1

0

1

2

2

1

11

0

1

0

1

2

2

1

−1

−1

11

22

−1−1

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

BPTT – Notational Clarity

0

1,1

0,1

0

1,2

0,2

1

11

1,1

1

1,2

2,1

2,2

0

1,−1

0,−1

1

1,−1

2,−1

Loss/divergence function , , . . . ,
(1)

(2)

()

0

1,

0,

1

1,

2,

11



11

11

1(−2)

11

1,0

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

Multivariate Chain Rule

� The chain rule of differentiation states

df (u(x))

dx
=

df

du

du

dx

when f depends on x through u().
� The multivariate chain rule of differentiation states

df (u(x),v(x))

dx
=

∂f

∂u

du

dx
+
∂f

∂v

dv

dx

when f depends on x through u() and through v().
� Backpropagation is just an application of the multivariate chain rule.

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

BPTT

� After dropping L,T for clarity and using the multivariate chain rule

∂L
∂zi

=
∂L
∂h1

∂h1

∂zi
+

∂L
∂h2

∂h2

∂zi
+ · · ·+ ∂L

∂hK

∂hK
∂zi

=
�
∂L
∂h1

∂L
∂h2

. . . ∂L
∂hK

�

� �� �
∇hL




∂h1
∂zi
∂h2
∂zi
...

∂hK
∂zi




� �� �
∇zi

h

= ∇hL∇zih

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

BPTT

� This allows us to write

∇zL����
1×K

=
�
∂L
∂z1

∂L
∂z2

. . . ∂L
∂zK

�

=
�
∇hL∇z1h ∇hL∇z2h . . . ∇hL∇zKh

�

= ∇hL����
1×K

�
∇z1h ∇z2h . . . ∇zKh

�
� �� �

K×K

= ∇hL∇zh

where

∇zh =




∂h1
∂z1

∂h1
∂z2

. . . ∂h1
∂zK

∂h2
∂z1

∂h2
∂z2

. . . ∂h2
∂zK

...
...

. . .
...

∂hK
∂z1

∂hK
∂z2

. . . ∂hK
∂zK




is the K × K Jacobian matrix of h with respect to z.
� For simple, per-component activation functions (tanh, ReLU), Jacobian

will be diagonal. For softmax, it will be dense.
Nazar Khan Deep Learning

Dynamic Data RNN BPTT

BPTT

Derivative of loss L for any time t w.r.t weights of any layer l can
be computed as

∇Wl−1L� �� �
K×M

���
t
=




∂L
∂Wl−1

11

∂L
∂Wl−1

12
. . . ∂L

∂Wl−1
1M

∂L
∂Wl−1

21

∂L
∂Wl−1

22
. . . ∂L

∂Wl−1
2M

...
...

. . .
...

∂L
∂Wl−1

K1

∂L
∂Wl−1

K2
. . . ∂L

∂Wl−1
KM




0

1

0

1

2

2

1

−1

−1

11

22

−1−1

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

BPTT

Loss L for time t depends on W l−1 through zl ,t

∇Wl−1L� �� �
K×M

���
t
=




∂L
∂zl,t1

∂zl,t1
∂Wl−1

11

∂L
∂zl,t1

∂zl,t1
∂Wl−1

12
. . . ∂L

∂zl,t1

∂zl,t1
∂Wl−1

1M

∂L
∂zl,t2

∂zl,t2
∂Wl−1

21

∂L
∂zl,t2

∂zl,t2
∂Wl−1

22
. . . ∂L

∂zl,t2

∂zl,t2
∂Wl−1

2M

...
...

. . .
...

∂L
∂zl,tK

∂zl,tK

∂Wl−1
K1

∂L
∂zl,tK

∂zl,tK

∂Wl−1
K2

. . . ∂L
∂zl,tK

∂zl,tK

∂Wl−1
KM




0

1

0

1

2

2

1

−1

−1

11

22

−1−1

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

BPTT

∇Wl−1L� �� �
K×M

���
t
=




∂L
∂zl,t1

hl−1,t
1

∂L
∂zl,t1

hl−1,t
2 . . . ∂L

∂zl,t1
hl−1,t
M

∂L
∂zl,t2

hl−1,t
1

∂L
∂zl,t2

hl−1,t
2 . . . ∂L

∂zl,t2
hl−1,t
M

...
...

. . .
...

∂L
∂zl,tK

hl−1,t
1

∂L
∂zl,tK

hl−1,t
2 . . . ∂L

∂zl,tK

hl−1,t
M




=




∂L
∂zl,t1

∂L
∂zl,t2
...
∂L
∂zl,tK




� �� �
∇Tr

zl,t
L

�
hl−1,t
1 hl−1,t

2 . . . hl−1,t
M

�

� �� �
∇Tr

W l−1zl,t

=
�
∇Tr

zl,tL
��

∇Tr
W l−1zl ,t

�

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

BPTT

� Start from final output hL,T = f
�
zL,T

�
. Assuming ∇hL,TL

has been computed,

∇zL,TL� �� �
1×K

= ∇hL,TL� �� �
1×K

∇zL,T hL,T

� �� �
K×K

� Derivative of loss w.r.t weights of final layer at time T can
now be computed as

∇WL−1L� �� �
K×ML−1

���
T
=

�
∇Tr

zL,TL
��

hL−1,T
�Tr

0

1

0

1

2

2

1

−1

−1

11

22

−1−1

Nazar Khan Deep Learning

BPTT

0

1,1

0,1

0

1,2

0,2

1

11

1,1

1

1,2

2,1

2,2

0

1,−1

0,−1

1

1,−1

2,−1

Loss/divergence function , , . . . ,
(1)

(2)

()

0

1,

0,

1

1,

2,

11



11

11

1(−2)

11

1,0

� Viewed as a function of W L−1, loss can be written over time as

L
�
zL,1(W L−1), zL,2(W L−1), . . . , zL,T (W L−1)

�

� Therefore, using multivariate chain rule

∇WL−1L =

��
∇Tr

zL,TL
��

hL−1,T
�Tr

+
�
∇Tr

zL,T−1L
��

hL−1,T−1
�Tr

+ . . .+
�
∇Tr

zL,1L
��

hL−1,1
�Tr

�

=
t=T�

1

�
∇Tr

zL,tL
��

hL−1,t
�Tr

Dynamic Data RNN BPTT

BPTT

� Similarly, for each layer l from 1 to L

∇Wl−1L =
t=T�

1

�
∇Tr

zl,tL
��

hl−1,t
�Tr

(1)

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

BPTT

∇hL−1L
���
T� �� �

1×ML−1

= ∇zLL
���
T� �� �

1×ML

W L−1
� �� �

ML×ML−1

∇hL−1L
���
t� �� �

1×ML−1

= ∇zLL
���
t� �� �

1×ML

W L−1
� �� �

ML×ML−1

+∇zL−1L
���
t+1� �� �

1×ML−1

W L−1,L−1
� �� �
ML−1×ML−1

0

1

0

1

2

2

1

−1

−1

11

22

−1−1

Nazar Khan Deep Learning

Dynamic Data RNN BPTT

RNN Variations

1 hidden state 2 hidden states Skip connections
Nazar Khan Deep Learning

