MA-110 Linear Algebra

Nazar Khan

PUCIT
10. Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

Definition

Content in this lecture applies only to square matrices.

- Recall that matrix-vector multiplication \Longrightarrow linear transformation.
- So every matrix-vector multiplication Mv transforms vector v.
- This transformation includes direction as well as scale.
- However, for a given M there are some nonzero vectors that are only scaled. That is

$$
\begin{equation*}
M \mathbf{v}=\lambda \mathbf{v} \tag{1}
\end{equation*}
$$

where λ is the scaling factor.

- Such vectors are called eigenvectors of M and the corresponding scales λ are called eigenvalues.

Eigenvalues and Eigenvectors

Definition

Cases when $M \mathrm{x}$ (in gray) is only a scaled version of x (in blue).

(a) $0 \leq \lambda \leq 1$
(b) $\lambda \geq 1$
(c) $-1 \leq \lambda \leq 0$
(d) $\lambda \leq-1$

Eigenvalues and Eigenvectors

 History- Derived from the German word eigen, meaning "own", "peculiar to", "characteristic", or "individual".
- Every square matrix has its own particular vectors that do not change direction after multiplication.

Eigenvalues and Eigenvectors

 UsesApplications in such diverse fields as

- computer graphics
- mechanical vibrations
- heat flow
- population dynamics
- quantum mechanics
- economics
- machine learning
- computer vision
- Google's PageRank algorithm
- lots of other areas.

Eigenvalues and Eigenvectors

How to compute?

- If \mathbf{v} is an eigenvector of M with corresponding eigenvalue λ, then

$$
M \mathbf{v}=\lambda \mathbf{v} \Longrightarrow \lambda \mathbf{v}-M \mathbf{v}=\mathbf{0} \Longrightarrow(\lambda I-M) \mathbf{v}=\mathbf{0}
$$

which implies that v is a null-vector of $\lambda I-M$.

- Since v is constrained to be nonzero, $\lambda I-M$ must have a null space (i.e., 0 determinant)

$$
\operatorname{det}(\lambda I-M)=0
$$

which is called the characteristic equation of M. This equation is used to find eigenvalues and eigenvectors.

- Compute characteristic equation for $M=\left[\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right]$.

Eigenvalues and Eigenvectors

How to compute?

- When the determinant is expanded, the characteristic equation of M takes the form

$$
\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n}
$$

which is called the characteristic polynomial of M.

- Since it is always of degree n, it can have maximum n distinct roots.
- Therefore, an $n \times n$ matrix can have a maximum of n distinct eigenvalues.
- An eigenvalue can sometimes be a complex number.

Examples

For $M=\left[\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right]$,
characteristic equation is $\left|\begin{array}{cc}\lambda+1 & -3 \\ -2 & \lambda\end{array}\right|=0$
$\Longrightarrow(\lambda+1) \lambda-(-3)(-2)=0$
$\Longrightarrow \lambda^{2}+\lambda-6=0$ (L.H.S is called the characteristic polynomial)
$\Longrightarrow \lambda=2$ and $\lambda=-3$ are the 2 eigenvalues of M.
For eigval $\lambda=-3,(\lambda I-M) \mathbf{v}=\mathbf{0}$
$\Longrightarrow\left[\begin{array}{cc}-3+1 & -3 \\ -2 & -3\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\Longrightarrow\left[\begin{array}{ll}-2 & -3 \\ -2 & -3\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Longrightarrow v_{2}=-\frac{2}{3} v_{1}$.
So the basis for the eigenspace corresponding to $\lambda=-3$ is the vector $\mathbf{v}=\left[\begin{array}{c}1 \\ -\frac{2}{3}\end{array}\right]$

Examples

For eigval $\lambda=2,(\lambda I-M) \mathbf{v}=\mathbf{0}$
$\Longrightarrow\left[\begin{array}{cc}2+1 & -3 \\ -2 & 2\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\Longrightarrow\left[\begin{array}{cc}3 & -3 \\ -2 & 2\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Longrightarrow v_{2}=v_{1}$.
So the basis for the eigenspace corresponding to $\lambda=2$ is the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Examples

Examples

Geometry of eigenvectors of the matrix $M=\left[\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right]$.

- The eigenspace corresponding to $\lambda=2$ is the line L_{1} through the origin and the point $(1,1)$.
- The eigenspace corresponding to $\lambda=3$ is the line L_{2} through the origin and the point $\left(-\frac{3}{2}, 1\right)$.
- Multiplication by M maps each vector in L_{1} back into L_{1}, scaling it by a factor of 2 .
- Similarly, each vector in L_{2} is mapped back into L_{2} after scaling it by a factor of -3 .

Examples

- For $M=\left[\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$, characteristic polynomial is $(\lambda-1)(\lambda-2)^{2}=0$. Verify.
- 2 is a root of the polynomial with multiplicity 2 .
- Their will be 2 eigenvectors corresponding to eigenvalue 2.
- We can also say that the eigenspace corresponding to $\lambda=2$ will be 2-dimensional. Find it.

Triangular Matrices

- Eigenvalues of any triangular matrix (lower, upper or diagonal) are the entries on the main diagonal.
- Proof: Look at the characteristic polynomial of $\left[\begin{array}{lll}a & b & c \\ 0 & d & e \\ 0 & 0 & f\end{array}\right]$ or any other diagonal matrix. Complete the proof.

Similarity Transformation

- Take two $n \times n$ matrices A and P.
- Assume P to be invertible.
- Consider the transformation

$$
A \rightarrow P^{-1} A P
$$

It is called a similarity transformation.

- If $B=P^{-1} A P$, then A and B are said to be similar matrices.

Similarity Transformation

- Such transformations are important because they preserve many properties of A. A and $P^{-1} A P$ have the same
- Determinant
- Invertibility
- Rank
- Nullity
- Trace
- Characteristic polynomial
- Eigenvalues
- Eigenspace dimension

Diagonalization

Definition

- We have seen that diagonal matrices are very convenient.
- Easily invertible.
- Eigenvalues are the diagonal entries themselves.
- Powers are easy.

For $n \times n$ matrices A and P where P is invertible, if $P^{-1} A P$ turns out to be a diagonal matrix, then A is said to be diagonalizable and P is said to diagonalize A.

- If A is similar to a diagonal matrix, then many properties of A can be obtained through the more convenient diagonal matrix $P^{-1} A P$.

Diagonalization

- Assume A is similar to a diagonal matrix D.
- Then P exists such that $P^{-1} A P=D \Longrightarrow A P=P D \Longrightarrow$ $A\left[\begin{array}{llll}\mathbf{p}_{1} & \mathbf{p}_{2} & \ldots & \mathbf{p}_{n}\end{array}\right]=\left[\begin{array}{llll}\mathbf{p}_{1} & \mathbf{p}_{2} & \ldots & \mathbf{p}_{n}\end{array}\right]\left[\begin{array}{llll}d_{1} & & \\ & \ddots & \\ & & & d_{n}\end{array}\right] \Longrightarrow A \mathbf{p}_{i}=d_{i} \mathbf{p}_{i}$ for $i=1,2, \ldots, n$.
- Therefore, the matrix P that diagonalizes A is made from the n eigenvectors of A.
- Since P is invertible (by assumption), the n eigenvectors must be linearly independent.
- Also, the diagonal matrix D is made from the corresponding eigenvalues of A.

Diagonalization

- Now assume A has n linearly independent eigenvectors.
- This implies that P made from those eigenvectors is invertible.
- This implies that A is diagonalizable.
- So we can state the following.

If A is an $n \times n$ matrix, the following statements are equivalent.

1. A is diagonalizable.
2. A has n linearly independent eigenvectors.

Eigenvalues of A^{k}

$$
\begin{aligned}
& A^{k} \mathrm{x}=A^{k-1} A \mathrm{x}=A^{k-1} \lambda \mathrm{x}=\lambda A^{k-1} \mathrm{x}=\lambda A^{k-2} A \mathrm{x}=\lambda A^{k-2} \lambda \mathrm{x}= \\
& \lambda^{2} A^{k-2} \mathrm{x}=\cdots=\lambda^{k} \mathrm{x} .
\end{aligned}
$$

If λ is an eigenvlaue of A with corresponding eigenvector x , then λ^{k} will be an eigenvlaue of A^{k} with the same corresponding eigenvector x .

Computing A^{k} via diagonalization

$$
\begin{aligned}
& P^{-1} A P=D \\
& \Longrightarrow\left(P^{-1} A P\right)^{2}=D^{2} \\
& \Longrightarrow\left(P^{-1} A P\right)\left(P^{-1} A P\right)=D^{2} \\
& \Longrightarrow P^{-1} A P P^{-1} A P=D^{2} \\
& \Longrightarrow P^{-1} A I A P=D^{2} \\
& \Longrightarrow P^{-1} A^{2} P=D^{2} \\
& \Longrightarrow A^{2}=P D^{2} P^{-1}
\end{aligned}
$$

More generally, for any positive integer $k, A^{k}=P D^{k} P^{-1}$. Notice that computing D^{k} is much easier.

Example

We have already computed the eigen-decomposition for $M=\left[\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$. Use it to compute A^{13}.

Geometric and Algebraic Multiplicity

- Geometric multiplicity: Dimension of the eigenspace corresponding to an eigenvalue.
- Algebraic multiplicity: Number of times an eigenvalue appears as a solution of the characteristic polynomial.
- Algebraic multiplicity \geq geometric multiplicity.

A square matrix is diagonalizable if and only if the geometric multiplicity of every eigenvalue is equal to the algebraic multiplicity.

