MA-110 Linear Algebra

Nazar Khan

PUCIT

11. Inner Product Spaces

Inner Product

We used the dot product of vectors in \mathbb{R}^{n} to define notions of

- length,
- angle,
- distance, and
- orthogonality.

Now we generalize those ideas to any vector space, not just \mathbb{R}^{n}.

Inner Product

An inner product on a real vector space V is a function that associates a real number $\langle\mathbf{u}, \mathbf{v}\rangle$ with each pair of vectors in V in such a way that the following 4 axioms are satisfied for all vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and all scalars k.

1. $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$ [Symmetry]
2. $\langle\mathbf{u}+\mathbf{v}, w\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$ [Additivity]
3. $\langle k \mathbf{u}, \mathbf{v}\rangle=k\langle\mathbf{u}, \mathbf{v}\rangle$ [Homogeneity]
4. $\langle\mathbf{v}, \mathbf{v}\rangle \geq 0$ and $\langle\mathbf{v}, \mathbf{v}\rangle=0$ if and only if $\mathbf{v}=\mathbf{0}$ [Positivity]
A real vector space with an inner product is called a real inner product space.

Inner Product

- Inner product of two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} was earlier defined using the dot product

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

- This is commonly known as the Euclidean inner product or standard inner product.
- Inner product can be defined in other ways as well - as long as the defined function satisfies the 4 axioms in the last slide.

Weighted Euclidean Inner Product

- Defined as

$$
\langle\mathbf{u}, \mathbf{v}\rangle=w_{1} u_{1} v_{1}+w_{2} u_{2} v_{2}+\cdots+w_{n} u_{n} v_{n}
$$

with weights $w_{1}, w_{2}, \ldots, w_{n}$.

- Setting all weights to 1 yields the standard Euclidean inner product.

Weighted Euclidean Inner Product

(a) The unit circle using the standard Euclidean inner product.

(b) The unit circle using a weighted Euclidean inner product.

- Left figure: Set of points at distance 1 from origin w.r.t standard Euclidean inner product $\langle\mathbf{u}, \mathbf{v}\rangle=u_{1} v_{1}+u_{2} v_{2}$.
- Right figure: Set of points at distance 1 from origin w.r.t weighted Euclidean inner product $\langle\mathbf{u}, \mathbf{v}\rangle=\frac{1}{9} u_{1} v_{1}+\frac{1}{4} u_{2} v_{2}$.

Weighted Euclidean Inner Product

- Sketch the unit circle in \mathbb{R}^{2} w.r.t weighted Euclidean inner product $\langle\mathbf{u}, \mathbf{v}\rangle=\frac{1}{25} u_{1} v_{1}+\frac{1}{49} u_{2} v_{2}$.
- Find weighted Euclidean inner products on \mathbb{R}^{2} for which the "unit circles" are the ellipses shown in the following figures.

Matrix inner product

- Defined as

$$
\langle\mathbf{u}, \mathbf{v}\rangle=A \mathbf{u} \cdot A \mathbf{v}=(A \mathbf{u})^{T} A \mathbf{v}=\mathbf{u}^{T} A^{T} A \mathbf{v}
$$

- Also called the inner product on \mathbb{R}^{n} generated by A.
- Setting $A=I$ yields the standard Euclidean inner product.
- Setting A as a diagonal matrix yields the weighted Euclidean inner product. Find A for
$\langle\mathbf{u}, \mathbf{v}\rangle=w_{1} u_{1} v_{1}+w_{2} u_{2} v_{2}+\cdots+w_{n} u_{n} v_{n}$.
- Can be viewed as standard inner product but after transforming by A.
- Plays a big role in Machine Learning, Image Processing, and Computer Vision.

Angles \& Orthogonality

In General inner product spaces

- We have already seen that angle between two vectors in \mathbb{R}^{n} can be computed using the dot product as

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}\right)
$$

- Recall that dot product is a specialized form of inner product which is more general.
- Angle between two vectors in a general inner product space can be computed using the inner product as

$$
\theta=\cos ^{-1}\left(\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\|\mathbf{u}\|\|\mathbf{v}\|}\right)
$$

Angles \& Orthogonality

In General inner product spaces

- Recall that $-1 \leq \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|} \leq 1$.
- For general inner products $-1 \leq \frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\|\mathbf{u}\|\|\mathbf{v}\|} \leq 1$ also holds.
- Norm (or length) is defined by $\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}$.
- Distance between two vectors becomes $d(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|=\sqrt{\langle\mathbf{u}-\mathbf{v}, \mathbf{u}-\mathbf{v}\rangle}$.
- Properties of length and distance also carry over in general spaces.
- $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$ (Triangle inequality for vectors)
- $d(\mathbf{u}, \mathbf{v}) \leq d(\mathbf{u}, \mathbf{w})+d(\mathbf{w}, \mathbf{v})$ (Triangle inequality for distances)
- $\langle\mathbf{u}, \mathbf{v}\rangle=0$ implies orthogonality.
- Note that orthogonality depends on the definition of the inner product.
- Compute $\langle\mathbf{u}, \mathbf{v}\rangle$ for $\mathbf{u}=(1,1)$ and $\mathbf{v}=(1,-1)$ using standard and weighted Euclidean inner product definitions.

Example

Angle between square matrices

- We have seen that matrices satisfy the 10 axioms of vector spaces.
- For $n \times n$ matrices, an inner product can be defined as $\langle\mathbf{u}, \mathbf{v}\rangle=\operatorname{trace}\left(U^{T} V\right)=u_{11} v_{11}+u_{22} v_{22}+\cdots+u_{n n} v_{n n}$.
- Find the cosine of the angle between the vectors

$$
\mathbf{u}=U=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { and } \mathbf{v}=V=\left[\begin{array}{cc}
-1 & 0 \\
3 & 2
\end{array}\right]
$$

- This gives us a method for computing similarities between objects in general vector spaces. Prerequisite: inner product needs to be defined first.

