MA-110 Linear Algebra

Nazar Khan

PUCIT

12. Gram-Schmidt Process

Orthogonal \& Orthonormal Sets

Content in this lecture applies to sets of 2 or more vectors.

- The solution of a problem can often be simplified by choosing a basis with orthogonal basis vectors.
- Further simplification is achieved if the orthogonal vectors are also unit vectors.

A set of two or more vectors in a real inner product space is said to be orthogonal if all pairs of distinct vectors in the set are orthogonal.

An orthogonal set in which each vector has norm 1 is said to be orthonormal.

- Roughly, orthonormal = orthogonal + normal.

Orthogonal \& Orthonormal Basis

- Recall that any set of n linearly independent vectors constitutes a basis for \mathbb{R}^{n}.
- If a set of basis vectors is orthogonal as well, it is called an orthogonal basis.
- If an orthogonal basis is made from unit vectors, it is called an orthonormal basis.
- Any vector v can be normalized by dividing by its magnitude $\frac{1}{\|\mathbf{v}\| v}$ which makes it a unit vector. Verify this.
- A familiar orthonormal basis is the standard basis for \mathbb{R}^{n} with the Euclidean inner product:

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right] \quad \ldots \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

Example

Verify that the following set is orthonormal with respect to the standard Euclidean inner product on \mathbb{R}^{3}.

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{u}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right] \quad \mathbf{u}_{3}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Why orthonormal basis?

- Assume $S=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)$ is a non-orthogonal basis for \mathbb{R}^{n}.
- Any vector \mathbf{u} can be represented in S as

$$
\mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

which can be written as a linear system $V \mathbf{c}=\mathbf{u}$

$$
\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\mathbf{u}
$$

- It can be solved for the coefficients $c_{1}, c_{2}, \ldots, c_{n}$ via matrix inversion $\mathbf{c}=V^{-1} \mathbf{u}$ which can be an expensive operation.

Why orthonormal basis?

- Had S been orthogonal (or orthonormal), finding the c_{i} would have been much easier.
- Orthogonal case:

$$
c_{i}=\frac{\left\langle\mathbf{u}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}}
$$

- Orthonormal case:

$$
c_{i}=\left\langle\mathbf{u}, \mathbf{v}_{i}\right\rangle
$$

- Notice the convenience - linear system versus simple inner products.

Why orthonormal basis?

Proof of orthogonal case

$$
\begin{aligned}
\left\langle\mathbf{u}, \mathbf{v}_{i}\right\rangle & =\left\langle c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}, \mathbf{v}_{i}\right\rangle \\
& =c_{1}\left\langle\mathbf{v}_{1}, \mathbf{v}_{i}\right\rangle+c_{2}\left\langle\mathbf{v}_{2}, \mathbf{v}_{i}\right\rangle+\cdots+c_{n}\left\langle\mathbf{v}_{n}, \mathbf{v}_{i}\right\rangle \\
& =c_{i}\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle \text { since } S \text { is an orthogonal basis } \\
\Longrightarrow c_{i} & =\frac{\left\langle\mathbf{u}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}}
\end{aligned}
$$

Orthonormal case can now be proven by observing that $\left\|\mathbf{v}_{i}\right\|=1$ if S is an orthonormal basis.

Orthogonal Projection

- \mathbf{u} is a vector in inner product space V.
- W is a subspace of V.
- We can express

$$
\mathbf{u}=\operatorname{proj}_{w} \mathbf{u}+\operatorname{proj}_{w \perp} \mathbf{u}
$$

or alternatively,

$$
\operatorname{proj}_{W \perp} \mathbf{u}=\mathbf{u}-\operatorname{proj}_{W} \mathbf{u}
$$

Orthogonal Projections

- Let W be an r-dimensional subspace of V and let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ be an orthogonal basis for W.
$\operatorname{proj}_{W} \mathbf{u}=\frac{\left\langle\mathbf{u}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}+\frac{\left\langle\mathbf{u}, \mathbf{v}_{2}\right\rangle}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}+\cdots+\frac{\left\langle\mathbf{u}, \mathbf{v}_{r}\right\rangle}{\left\|\mathbf{v}_{r}\right\|^{2}} \mathbf{v}_{r}$.
- If basis is orthonormal, then

$$
\operatorname{proj}_{W} \mathbf{u}=\left\langle\mathbf{u}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}+\left\langle\mathbf{u}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2}+\cdots+\left\langle\mathbf{u}, \mathbf{v}_{r}\right\rangle \mathbf{v}_{r} .
$$

Gram-Schmidt Process

- Every nonzero finite-dimensional inner product space has an orthonormal basis.
- A basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}$ can be converted into an orthonormal basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ via the Gram-Schmidt process.
- Basic idea: $\mathbf{u}-\operatorname{proj}_{W} \mathbf{u}$ is always orthogonal to W.

Gram-Schmidt Process

To convert a basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}$ into an orthogonal basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$, perform the following computations:

1. $\mathbf{v}_{1}=\mathbf{u}_{1}$
2. $\mathbf{v}_{2}=\mathbf{u}_{2}-\frac{\left\langle\mathbf{u}_{2}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}$
3. $\mathbf{v}_{3}=\mathbf{u}_{3}-\frac{\left\langle\mathbf{u}_{3}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{\mathbf{1}}\right\|^{2}} \mathbf{v}_{1}-\frac{\left\langle\mathbf{u}_{3}, \mathbf{v}_{2}\right\rangle}{\left\|\mathbf{v}_{\mathbf{2}}\right\|^{2}} \mathbf{v}_{2}$
4. $\mathbf{v}_{4}=\mathbf{u}_{4}-\frac{\left\langle\mathbf{u}_{4}, \mathbf{v}_{1}\right\rangle}{\| \| \mathbf{v}_{1} \|^{2}} \mathbf{v}_{1}-\frac{\left\langle\mathbf{u}_{4}, \mathbf{v}_{2}\right\rangle}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}-\frac{\left\langle\mathbf{u}_{4}, \mathbf{v}_{3}\right\rangle}{\left\|\mathbf{v}_{3}\right\|^{2}} \mathbf{v}_{3}$
5. Continue until \mathbf{v}_{r}.

Normalize the \mathbf{v}_{i} vectors to obtain an orthonormal basis.
Notice that by construction $\mathbf{v}_{\boldsymbol{i}}$ is orthogonal to each of the vectors in $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{i-1}$.

Gram-Schmidt Process

Assume Euclidean inner product is defined on \mathbb{R}^{3}. Apply the Gram-Schmidt process to transform the basis vectors

$$
\mathbf{u}_{1}=(1,1,1), \mathbf{u}_{2}=(0,1,1), \mathbf{u}_{3}=(0,0,1)
$$

into an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, and then normalize the orthogonal basis vectors to obtain an orthonormal basis $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$.

QR Decomposition

Every invertible matrix A can be written as the product $A=Q R$ of an orthonormal matrix Q and an upper triangular matrix R.

- The column vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ of A can be converted into an orthonormal set $\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}$ using the Gram-Schmidt process.
- Each column vector \mathbf{u}_{i} can be represented in the new basis as

$$
\begin{aligned}
\mathbf{u}_{i} & =\left\langle\mathbf{u}_{i}, \mathbf{q}_{1}\right\rangle \mathbf{q}_{1}+\left\langle\mathbf{u}_{i}, \mathbf{q}_{2}\right\rangle \mathbf{q}_{2}+\cdots+\left\langle\mathbf{u}_{i}, \mathbf{q}_{n}\right\rangle \mathbf{q}_{n} \\
& =\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \cdots & \mathbf{q}_{n}
\end{array}\right]\left[\begin{array}{c}
\left\langle\mathbf{u}_{i}, \mathbf{q}_{1}\right\rangle \\
\left\langle\mathbf{u}_{i}, \mathbf{q}_{2}\right\rangle \\
\vdots \\
\left\langle\mathbf{u}_{i}, \mathbf{q}_{n}\right\rangle
\end{array}\right]
\end{aligned}
$$

QR Decomposition

- So the n columns of A can be represented as

$$
\underbrace{\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{n}
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \ldots & \mathbf{q}_{n}
\end{array}\right]}_{Q} \underbrace{\left[\begin{array}{cccc}
\left\langle\mathbf{u}_{1}, \mathbf{q}_{1}\right\rangle & \left\langle\mathbf{u}_{2}, \mathbf{q}_{1}\right\rangle & \ldots & \left\langle\mathbf{u}_{n}, \mathbf{q}_{1}\right\rangle \\
\left\langle\mathbf{u}_{1}, \mathbf{q}_{2}\right\rangle & \left\langle\mathbf{u}_{2}, \mathbf{q}_{2}\right\rangle & \ldots & \left\langle\mathbf{u}_{n}, \mathbf{q}_{2}\right\rangle \\
\vdots & \vdots & & \vdots \\
\left\langle\mathbf{u}_{1}, \mathbf{q}_{n}\right\rangle & \left\langle\mathbf{u}_{2}, \mathbf{q}_{n}\right\rangle & \ldots & \left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle
\end{array}\right]}_{R}
$$

- The terms in the lower triangle (shown in red) are all 0 due to the Gram-Schmidt process. Hence R is an upper triangular matrix.
- Find a QR-decomposition of

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

