MA-110 Linear Algebra

Nazar Khan
PUCIT
13. Least Squares Fitting

Pseudoinverse Matrix

- Consider the linear system $\mathbf{A} \mathbf{x}=\mathbf{b}$ where \mathbf{A} is an $m \times n$ matrix.
- If $m=n$ and \mathbf{A} is invertible, then $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$.
- However, if $m \neq n$, then

$$
\begin{equation*}
A x=b \Longrightarrow A^{\top} \mathbf{A x}=\mathbf{A}^{\top} \mathbf{b} \Longrightarrow x=\underbrace{\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top}}_{\mathbf{A}^{\dagger}} \mathbf{b} \tag{1}
\end{equation*}
$$

where the $n \times m$ matrix $\mathbf{A}^{\dagger}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}$ is called the pseudoinverse of \mathbf{A}.

Least Squares Fitting

- For both cases of $m=n$ and $m \neq n$, there is a possibility that the linear system $\mathbf{A x}=\mathbf{b}$ is inconsistent.
- This happens very often in real-world applications where there is noise in measurements used to form \mathbf{A} and/or \mathbf{b}.
- In such cases, $\mathbf{A x} \approx \mathrm{b}$ and it makes more sense to find an x that minimizes the length of the error vector $\mathbf{A x}-\mathbf{b}$.
- That is, the best possible x should be the one for which $\|\mathbf{A x}-\mathbf{b}\|$, or equivalently, $\|\mathbf{A x}-\mathbf{b}\|^{2}$ is the smallest.
- Such a solution for x is called the least squares solution.

Least Squares Fitting

- If $\mathbf{A} \mathbf{x} \neq \mathbf{b}$ then \mathbf{b} cannot lie in the column space of \mathbf{A}.
- But $\mathbf{A x}$ is always a linear combination of the columns of \mathbf{A}. Hence it lies in $\operatorname{col}(\mathbf{A})$.
- Vector $\mathbf{A x}$ is closest to \mathbf{b} when it is the projection of \mathbf{b} onto $\operatorname{col}(A)$. That is,

$$
\begin{align*}
& \mathbf{A x}=\operatorname{proj}_{\mathrm{col}(\mathbf{A})} \mathbf{b} \tag{2}\\
\Longrightarrow & \mathbf{b}-\mathbf{A x}=\mathbf{b}-\operatorname{proj}_{\mathrm{col}(\mathbf{A})} \mathbf{b} \tag{3}\\
\Longrightarrow & \mathbf{A}^{T}(\mathbf{b}-\mathbf{A x})=\mathbf{A}^{T}\left(\mathbf{b}-\operatorname{proj}_{\mathrm{col}(\mathbf{A})} \mathbf{b}\right) \tag{4}
\end{align*}
$$

where the R.H.S is equal to 0 since $\left.\mathbf{b}-\operatorname{proj}_{c o l}(\mathbf{A}) \mathbf{b}\right)$ is orthogonal to $\operatorname{col}(\mathbf{A})$.

$$
\begin{align*}
& \Longrightarrow \mathbf{A}^{T}(\mathbf{b}-\mathbf{A} \mathbf{x})=\mathbf{0} \Longrightarrow \mathbf{A}^{T} \mathbf{b}=\mathbf{A}^{T} \mathbf{x} \tag{5}\\
& \Longrightarrow \mathbf{x}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}=\mathbf{A}^{\dagger} \mathbf{b} \tag{6}
\end{align*}
$$

- So, the least squares solution is also obtained via the pseudoinverse.

