MA-110 Linear Algebra

Nazar Khan

PUCIT

13. Least Squares Fitting

Pseudoinverse Matrix

- ▶ Consider the linear system Ax = b where A is an $m \times n$ matrix.
- ▶ If m = n and **A** is invertible, then $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.
- ▶ However, if $m \neq n$, then

$$Ax = b \implies A^T Ax = A^T b \implies x = \underbrace{(A^T A)^{-1} A^T}_{A^{\dagger}} b$$
 (1)

where the $n \times m$ matrix $\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ is called the *pseudoinverse* of \mathbf{A} .

Least Squares Fitting

- ▶ For both cases of m = n and $m \neq n$, there is a possibility that the linear system Ax = b is inconsistent.
- ► This happens very often in real-world applications where there is noise in measurements used to form A and/or b.
- ▶ In such cases, $Ax \approx b$ and it makes more sense to find an x that minimizes the length of the *error vector* Ax b.
- ► That is, the *best possible* x should be the one for which $\|\mathbf{A}\mathbf{x} \mathbf{b}\|$, or equivalently, $\|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$ is the smallest.
- ► Such a solution for x is called the *least squares solution*.

Least Squares Fitting

- ▶ If $Ax \neq b$ then **b** cannot lie in the column space of **A**.
- But Ax is always a linear combination of the columns of A. Hence it lies in col(A).
- Vector Ax is closest to b when it is the projection of b onto col(A). That is,

$$\mathbf{A}\mathbf{x} = \mathbf{proj}_{\mathsf{col}(\mathbf{A})}\mathbf{b} \tag{2}$$

$$\Longrightarrow b-Ax=b-proj_{col(\textbf{A})}b \tag{3}$$

$$\Longrightarrow A^{T}(b - Ax) = A^{T}(b - proj_{col(A)}b) \tag{4}$$

where the R.H.S is equal to 0 since $b - proj_{col(A)}b$) is orthogonal to col(A).

$$\Longrightarrow A^{T}(b - Ax) = 0 \implies A^{T}b = A^{T}x$$
 (5)

$$\Longrightarrow \mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} = \mathbf{A}^\dagger \mathbf{b} \tag{6}$$

► So, the least squares solution is also obtained via the pseudoinverse.

Nazar Khan