MA-110 Linear Algebra

Nazar Khan

PUCIT

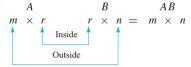
2. Matrix Arithmetic

Matrices

- ▶ Rectangular arrays of numbers with *m* rows and *n* columns.
- If m = n, we have a square matrix of order n.
- Entries $a_{11}, a_{22}, \ldots, a_{nn}$ constitute the main diagonal.
- *Transpose* by swapping rows and columns.
- In matrix arithmetic
 - size matters
 - A + B is valid only if dimensions are equal
 - A * B is valid only if dimensions match
 - order matters $(A * B \neq B * A \text{ generally})$

Matrix Multiplication

 Multiplication is valid if columns of first matrix are equal to rows of second.

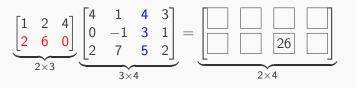


Multiplication is carried by taking the dot-product of row i of A with column j of B.

$$AB = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1r} \\ a_{21} & a_{22} & \cdots & a_{2r} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ir} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mr} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{r1} & b_{r2} & \cdots & b_{rj} & \cdots & b_{rn} \end{bmatrix}$$

$$(AB)_{ij} = a_{i1}b_{j1} + a_{i2}b_{j2} + \cdots + a_{in}b_{jn}$$

Matrix Multiplication



 $(AB)_{23} = a_{21}b_{31} + a_{22}b_{32} + \dots + a_{2n}b_{3n} = 2 \cdot 4 + 6 \cdot 3 + 0 \cdot 5 = 26$ Fill the rest.

3 ways of looking at a matrix

- Set of rows
- Set of columns
- Set of blocks (sub-matrices)

ſ	a ₁₁	a ₁₂	a ₁₃	a ₁₄ -]	a ₁₁	a ₁₂	a ₁₃	a ₁₄		a ₁₁	a_{12}	a_{13}	a ₁₄ a ₂₄ a ₃₄
	a ₂₁	a ₂₂	a ₂₃	a ₂₄	,	a ₂₁	a ₂₂	a ₂₃	a ₂₄	,	a ₂₁	a ₂₂	a ₂₃	a ₂₄
L	a ₃₁	a ₃₂	a33	a ₃₄		a ₃₁	a ₃₂	a33	a ₃₄		a ₃₁	a ₃₂	a33	a ₃₄

- Vector-matrix multiplication can be seen as a *linear* combination of matrix rows.
- Matrix-vector multiplication can be seen as a linear combination of matrix columns.
- Matrix-matrix multiplication can be seen as column-row expansion (sum of outer-products).

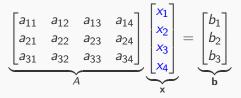
Matrix Form of a Linear System

Every linear system can be expressed in matrix vector form and vice versa.

The linear system

 $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = b_3$

can also be written as $A\mathbf{x} = \mathbf{b}$



where A is called the *coefficient matrix*, \mathbf{x} is the vector of unknowns $\overline{A_{\text{Nazar Kighd}} \mathbf{b}}$ is the vector of constants.

Trace

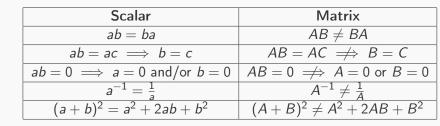
- There are some operations/concepts that are defined <u>only</u> for square matrices.
 - Trace (sum of entries on the main diagonal)
 - Determinant
 - Inverse
 - Identity

Matrix Arithmetic Properties

	Assuming that the sizes of the matrices are such that the indicated operations can be performed, the following rules of matrix arithmetic are valid.					
(a	7)	A + B = B + A	[Commutative law for matrix addition]			
(<i>k</i>	5)	A + (B + C) = (A + B) + C	[Associative law for matrix addition]			
(0	;)	A(BC) = (AB)C	[Associative law for matrix multiplication]			
(a	1)	A(B+C) = AB + AC	[Left distributive law]			
(e	2)	(B+C)A = BA + CA	[Right distributive law]			
(f)	A(B-C) = AB - AC				
(8	g)	(B-C)A = BA - CA				
(//	<i>i</i>)	a(B+C) = aB + aC				
(i)	a(B-C) = aB - aC				
G	j)	(a+b)C = aC + bC				
(<i>k</i>	k)	(a-b)C = aC - bC				
(l)	a(bC) = (ab)C				
(1	n)	a(BC) = (aB)C = B(aC)				

Matrix Multiplication *Be Careful!*

- While most matrix arithmetic follows the rules of basic scalar arithmetic, there are some important exceptions.
- There is no such thing as matrix division!



Identity Matrix

- Identity matrix is a square, diagonal matrix containing only 1s on the diagonal and 0s elsewhere.
- I_n denotes the $n \times n$ identity matrix.
- ▶ Plays the role that 1 plays in scalar arithmetic.
- $AI_n = A$ and $I_n A = A$.
- Reduced row-echelon form of a square n × n matrix is either I_n or contains a row of zeros.

Matrix Inverse

Content in this slide applies only to square matrices.

- ► If A is a square matrix and if there exists another square matrix B such that AB = BA = I, then A is invertible (or non-singular) and B is the inverse of A.
- $\begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$ is an inverse of $\begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$. Verify it.
- Any matrix with a column (or row) of zeros is not invertible. Why?
- If A and B are invertible matrices with the same size, then AB is invertible and (AB)⁻¹ = B⁻¹A⁻¹. Prove it.

• Similarly,
$$(A_1A_2A_3...A_n)^{-1} = A_n^{-1}...A_2^{-1}A_1^{-1}$$
.

Powers of a matrix

Content in this slide applies only to square matrices.

•
$$A^0 = I$$

• For any integer $n > 0$, $A^n = \underbrace{AA \dots A}_n$
• Also, $A^{-n} = \underbrace{A^{-1}A^{-1} \dots A^{-1}}_n$.

$$\blacktriangleright A^r A^s = A^{r+s}.$$

$$\blacktriangleright (A^r)^s = A^{rs}.$$

► For non-singular A, kA is invertible for any nonzero scalar k, and $(kA)^{-1} = \frac{1}{k}A^{-1}$. Verify that their product yields I.

Properties of the Matrix Transpose

•
$$(A^{T})^{T} = A$$

• $(A + B)^{T} = A^{T} + B^{T}$
• $(A - B)^{T} = A^{T} - B^{T}$
• $(kA)^{T} = kA^{T}$
• $(AB)^{T} = B^{T}A^{T}$
• $(A_{1}A_{2}A_{3}...A_{n})^{T} = A_{n}^{T}...A_{2}^{T}A_{1}^{T}$
• $(A^{T})^{-1} = (A^{-1})^{T}$. Verify it.

Questions

► Exercise 1.3

▶ 7, 8, 11, 13, 17, 25, 27, 28, 30, 35, 36, all true-false questions.