MA-110 Linear Algebra

Nazar Khan

PUCIT

3. Matrix Inverse

Elementary Matrices

- Recall the 3 elementary row operations: scale, swap, add.
- If A converts into B via a sequence of elementary row operations, then B can also be converted back into A via the inverse sequence of elementary row operations.
- A and B are said to be row equivalent.
- E is called an elementary matrix if it can be obtained from I via a single elementary row operation.

$$
\left.\begin{array}{ll}
{\left[\begin{array}{rr}
1 & 0 \\
0 & -3
\end{array}\right]}
\end{array} \begin{array}{cccc}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0
\end{array}\right.} \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Elementary Matrices

- $I_{m} \rightarrow E$ via a single elementary row operation.
- EA performs the same row operation on $A_{m \times n}$.
- Example: Through which ERO does I_{2} convert to $E=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$ represent? What is the effect of $E\left[\begin{array}{ccc}1 & 0 & 2 \\ 2 & -1 & 3\end{array}\right]$?

Elementary Matrices

- For every ERO, there is an inverse ERO that recovers $/$.

- Every elementary matrix is invertible and the inverse is also an elementary matrix.

Equivalent Statements

- If A is an $n \times n$ matrix, then the following statements are equivalent, that is, all true or all false.

1. A is invertible.
2. $\mathbf{A x}=\mathbf{0}$ has only the trivial solution.
3. The reduced row echelon form of A is I_{n}.
4. A is expressible as a product of elementary matrices.

- Proofs
- $1 \Longrightarrow 2$: Let \mathbf{x}_{0} be any solution. Then $A \mathbf{x}_{0}=\mathbf{0}$. Assuming 1 is true $A^{-1} A \mathbf{x}_{0}=A^{-1} \mathbf{0} \Longrightarrow \mathbf{x}_{0}=\mathbf{0}$. So any solution must be the trivial solution and so $1 \Longrightarrow 2$.
- $2 \Longrightarrow 3$: If 2 is true the solution can only be written as $x_{1}=0, x_{2}=0, \ldots, x_{n}=0$. Since the solution can be directly read out from the RREF, it cannot be anything other than I_{n}. So $2 \Longrightarrow 3$.
- $3 \Longrightarrow$ 4: If 3 is true then A and I_{n} are row-equivalent. So $E_{k} \ldots E_{2} E_{1} A=I_{n}$. So $A=E_{1}^{-1} E_{2}^{-1} \ldots E_{k}^{-1} I_{n}$. So $3 \Longrightarrow 4$.

Equivalent Statements

- $4 \Longrightarrow 1$: If 4 is true then $A=E_{1}^{-1} E_{2}^{-1} \ldots E_{k}^{-1} I_{n}$. Since every E_{i}^{-1} is invertible, their sequence is also invertible and A is equal to that sequence. Hence A is invertible.
- These proofs give us a method for finding the inverse of a square matrix.
- Since $E_{k} \ldots E_{2} E_{1} A=I_{n}$, we can right-multiply both sides by A^{-1} to obtain $E_{k} \ldots E_{2} E_{1} I_{n}=A^{-1}$.

The same sequence of row operations that reduces A to I_{n} will transform I_{n} to A^{-1}.

A method for finding A^{-1}

- To obtain A^{-1}, first adjoin I_{n} to the right side of A. That is, form the partitioned matrix $\left[A \mid I_{n}\right]$.
- Then reduce A to I_{n} on the left via sequence of EROs while applying the same to I_{n} on the right.
- If A is invertible, then when A reduces to I_{n}, I_{n} would have reduced to A^{-1}.
- Let's verify that for

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 8
\end{array}\right] \text {, the inverse is } A^{-1}=\left[\begin{array}{ccc}
-40 & 16 & 9 \\
13 & -5 & -3 \\
5 & -2 & -1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 5 & 3 & 0 & 1 & 0 \\
1 & 0 & 8 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & -2 & 5 & -1 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & -1 & -5 & 2 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right]} \\
& {\left[\begin{array}{lll|rrr}
1 & 2 & 0 & -14 & 6 & 3 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right]} \\
& {\left[\begin{array}{lll|rrr}
1 & 0 & 0 & -40 & 16 & 9 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right]} \\
& \text { We added }-2 \text { times the first } \\
& \text { row to the second and }-1 \text { times } \\
& \text { the first row to the third. } \\
& \text { We added } 2 \text { times the } \\
& \text { second row to the third. } \\
& \text { We multiplied the } \\
& \text { third row by }-1 \text {. } \\
& \text { We added } 3 \text { times the third } \\
& \text { row to the second and }-3 \text { times } \\
& \text { the third row to the first. } \\
& \text { We added }-2 \text { times the } \\
& \text { second row to the first. }
\end{aligned}
$$

A method for finding A^{-1}

 What if A is not invertible?- If A is not invertible, then it cannot be reduced to RREF.
- Therefore, if A is not invertible, then this algorithm will produce a zero row and stop.
- Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 6 & 4 \\
2 & 4 & -1 \\
-1 & 2 & 5
\end{array}\right]
$$

Solving Linear Systems via Matrix Inversion

- If A is invertible, the linear system $A \mathbf{x}=\mathbf{b}$ can be solved as $\mathbf{x}=A^{-1} \mathbf{b}$. Proof?
- So now we have seen 3 ways of solving linear systems.

1. Gaussian elimination + back-substitution
2. Gauss-Jordan elimination
3. Matrix inversion (only for square, invertible A).

- Solve

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
5 \\
3 \\
17
\end{array}\right]
$$

Equivalent Statements

- If A is an $n \times n$ matrix, then the following statements are equivalent, that is, all true or all false.

1. A is invertible.
2. $\mathbf{A x}=\mathbf{0}$ has only the trivial solution.
3. The reduced row echelon form of A is I_{n}.
4. A is expressible as a product of elementary matrices.
5. $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every $n \times 1$ vector \mathbf{b}. The solution is $\mathbf{x}=A^{-1} \mathbf{b}$.

- Proof: $1 \Longleftrightarrow 5$
- If 1 is true then A^{-1} exists. So we can rewrite 5 as $A^{-1} A \mathbf{x}=A^{-1} \mathbf{b}$ and therefore $\mathbf{x}=A^{-1} \mathbf{b}$. So $1 \Longrightarrow 5$.

Equivalent Statements

- If 5 is true then a solution to $A \mathbf{x}=\mathbf{b}$ exists for every \mathbf{b}. If a solution exists for every \mathbf{b}, then solutions exist for the following b vectors too.

$$
\mathbf{b}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \ldots, \mathbf{b}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

Let those solutions be $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ and let $C=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{n}\end{array}\right]$. Clearly, $\left[\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{n}\end{array}\right]=I_{n}$. So $A C=I_{n}$ and therefore $C=A^{-1}$. So $5 \Longrightarrow 1$.

- Let A and B be square matrices of the same size. If $A B$ is invertible, then A and B must also be invertible.

Questions

- Exercise 1.4
- 9, 10, 15 - 20, 23, 24, 31, 32, $34-36,39,41,43,46$, all true-false questions.

