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5. Matrix Transformations



Matrix Transformations

I Special class of functions that arise from matrix multiplication.
I These functions are called "matrix transformations".
I Fundamental in the study of linear algebra.
I Important applications in physics, engineering, social sciences,

and various branches of mathematics.
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Basis Vectors

I Vectors. Default representation as a column of numbers.
Denoted via lower-case, bold letters. For example, x, v,b.

I Basis vectors for Rn

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1


I Called basis vectors because every vector x ∈ Rn can be

represented as a linear combination of these basis vectors.

x = x1e1 + x2e2 + · · ·+ xnen
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Functions

Usually we have considered functions as mappings from a ∈ R to
b ∈ R.
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Transformations

I A function that maps from Rn to Rm is usually called a
transformation.

I Map vectors to vectors.
I Commonly denoted by the letter T .

T : Rn → Rm

I For m = n, the transformations are usually called operators on
Rn.

I Linear systems Axn×1 = bm×1 can be viewed as
transformations from Rn to Rm.
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Linear systems as Transformations

Represented as
I TA : Rn → Rm

I b = TA(x)
I x TA−−→ b.

Read as "TA maps x onto b".
Transformtion TA is just "multiplication by matrix A".
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Zero and Identity

I The 0m×n matrix containing all zeros is the zero
transformation from Rn to Rm.

T0(u) = 0

I In is the identity operator from Rn to Rn.

TIn(u) = u
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Properties

I For every matrix A the matrix transformation TA : Rn → Rm

has the following properties for all vectors u and v and for
every scalar k :

1. TA(0) = 0.
2. TA(ku) = kTA(u). [Homogeneity property]
3. TA(u + v) = TA(u) + TA(v). [Additivity property]
4. TA(u− v) = TA(u)− TA(v).

I Properties 2 and 3 imply linearity. A transformation with both
properties is a linear transformation.

I Therefore, matrix transformations are linear transformations.
I It follows from 2 and 3 that

TA(k1u1+k2u2+· · ·+krur ) = k1TA(u1)+k2TA(u2)+· · ·+krTA(ur )

which states that a matrix transformation maps a linear
combination of vectors in Rn into the corresponding linear
combination of vectors in Rm.
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Vectors vs. Points

Since n-dimensional vectors can be viewed as points in Rn, matrix
transformations can be viewed as acting on vectors or points.

Which view to take depends on the problem.
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Applications of linear algebra
Polynomial Interpolation
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Applications of linear algebra
Approximate Integration
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