### MA-110 Linear Algebra

### Nazar Khan

**PUCIT** 

7. Vector Spaces

#### Vectors

Vectors

- ▶ Vectors in  $\mathbb{R}^n$  are n—tuples. Ordered sets of n numbers.
- ▶ Vectors in  $\mathbb{R}^2$  and  $\mathbb{R}^3$  are called *geometric vectors*.
- $\triangleright$  They can be generalized to vectors in  $\mathbb{R}^n$ .
- Applications of vectors
  - ▶ Digital color images (x, y, r, g, b).
  - Experimental measurements.
  - Electrical circuits.
  - ... practically anything can be modelled using vectors.

Vectors

## Operations on vectors

If  $\mathbf{u}, \mathbf{v}$ , and  $\mathbf{w}$  are vectors in  $\mathbb{R}^n$ , and if k and m are scalars, then:

- 1. u + v = v + u
- 2. (u + v) + w = u + (v + w)
- 3. u + 0 = 0 + u = u
- 4. u + (-u) = 0
- **5**. k(u + v) = ku + kv
- 6. (k + m)u = ku + mu
- **7**. k(mu) = (km)u
- 8. 1u = u

A linear combination of vectors can be written as

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_r \mathbf{v}_r$$

where the scalars  $k_1, k_2, \ldots, k_r$  are the *coefficients* of the linear combination.

#### Norm

▶ The *length* or *magnitude* of a vector is called its *norm*.

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

#### **Unit Vector**

- ▶ A vector of unit norm (length=1) is called a *unit vector*.
- Useful when only direction is important.
- Any (non-zero) vector can be normalized to form a unit vector in the same direction

$$\mathbf{u} = \frac{1}{\|\mathbf{v}\|}\mathbf{v}$$

Directions of coordinate axes in a rectangular coordinate system are called the standard unit vectors.

|   | $\mathbb{R}^2$ | $\mathbf{i}=(1,0)$ and $\mathbf{j}=(0,1)$                                                                    |
|---|----------------|--------------------------------------------------------------------------------------------------------------|
|   | $\mathbb{R}^3$ | $\mathbf{i} = (1, 0, 0),  \mathbf{j} = (0, 1, 0) \text{ and } \mathbf{k} = (0, 0, 1)$                        |
| ĺ | $\mathbb{R}^n$ | $\mathbf{e}_1 = (1, 0, 0, \dots), \ \mathbf{e}_2 = (0, 1, 0, \dots), \dots, \mathbf{e}_n = (0, 0, \dots, 1)$ |

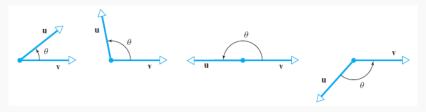
#### Distance

For  $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ , distance can be defined as

$$d(\mathbf{u},\mathbf{v}) = \|\mathbf{u}-\mathbf{v}\| = \sqrt{(u_1-v_1)^2 + (u_2-v_2)^2 + \cdots + (u_n-v_n)^2}$$

# **Dot Product**

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$



$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

Dot product enables computing angles between vectors in  $\mathbb{R}^n$ .

Notice that  $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$ . Verify this.

## Properties of Dot Product

If  $\mathbf{u}, \mathbf{v}$ , and  $\mathbf{w}$  are vectors in  $\mathbb{R}^n$ , and if k is a scalar, then:

- 1.  $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$  [Symmetry property]
- 2.  $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$  [Distributive property]
- 3.  $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$  [Homogeneity property]
- 4.  $\mathbf{v} \cdot \mathbf{v} \ge 0$  and  $\mathbf{v} \cdot \mathbf{v} = 0$  if and only if  $\mathbf{v} = \mathbf{0}$  [Positivity property]

### Matrix Multiplication via Dot Products

If the row vectors of A are  $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m$  and the column vectors of B are  $\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n$ , then the matrix product AB can be expressed as

$$AB = \begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{c}_1 & \mathbf{r}_1 \cdot \mathbf{c}_2 & \dots & \mathbf{r}_1 \cdot \mathbf{c}_n \\ \mathbf{r}_2 \cdot \mathbf{c}_1 & \mathbf{r}_2 \cdot \mathbf{c}_2 & \dots & \mathbf{r}_2 \cdot \mathbf{c}_n \\ \vdots & \vdots & & \vdots \\ \mathbf{r}_m \cdot \mathbf{c}_1 & \mathbf{r}_m \cdot \mathbf{c}_2 & \dots & \mathbf{r}_m \cdot \mathbf{c}_n \end{bmatrix}$$

### Orthogonality

- ▶ In  $\mathbb{R}^2$  and  $\mathbb{R}^3$ , vectors with an angle of  $\frac{\pi}{2}$  are called *perpendicular* vectors.
- ▶ The generalization of this concept in  $\mathbb{R}^n$  is *orthogonality*.

If the angle between two vectors in  $\mathbb{R}^n$  is  $\frac{\pi}{2}$ , they are said to be *orthogonal vectors*.

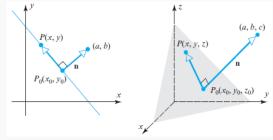
lacktriangle Orthogonality is denoted by the symbol  $\perp$ .

$$\mathbf{u} \cdot \mathbf{v} = 0 \implies \mathbf{u} \perp \mathbf{v}$$
. Why?

- ► So the purely geometric concept of orthogonality can be captured by the purely algebraic concept of dot product.
- ▶ Are standard unit vectors in  $\mathbb{R}^n$  orthogonal?

## Lines and Planes

- ightharpoonup A line in  $\mathbb{R}^2$  is determined uniquely by its slope and one of its points.
- ▶ A plane in  $\mathbb{R}^3$  is determined uniquely by its inclination and one of its points.



- ▶ Both can be represented algebraically as  $\mathbf{n} \cdot P_0 P = 0$ . That is, if point P lies on the line/plane, it must satisfy this equation.
- ▶ These are called the *point-normal* equations of lines/planes.

#### Lines and Planes

- ▶ If a and b are constants that are not both zero, then an equation of the form ax + by + c = 0 represents a line in  $\mathbb{R}^2$ with normal  $\mathbf{n} = (a, b)$ .
- ▶ If a, b, and c are constants that are not all zero, then an equation of the form ax + by + cz + d = 0 represents a plane in  $\mathbb{R}^3$  with normal  $\mathbf{n} = (a, b, c)$ .

### **Orthogonal Projections**



► Given any two vectors **u** and **a**, it is always possible to decompose u as

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$$

where  $\mathbf{w}_1$  is parallel to  $\mathbf{a}$  and  $\mathbf{w}_2 \perp \mathbf{a}$ .

 $\triangleright$  Setting  $\mathbf{w}_1 = k\mathbf{a}$ , we get

$$\mathbf{u} \cdot \mathbf{a} = (k\mathbf{a} + \mathbf{w}_2) \cdot \mathbf{a} = k\mathbf{a} \cdot \mathbf{a} + (\mathbf{w}_2 \cdot \mathbf{a}) = k\|\mathbf{a}\|^2$$

- ► This yields  $k = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}$ .
- ▶ Therefore,  $\mathbf{w}_1 = \operatorname{proj}_{\mathbf{a}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$  and  $\mathbf{w}_2 = \mathbf{u} \mathbf{w}_1$ .

- ► Show that  $\|\mathbf{w}_1\| = \|\operatorname{proj}_{\mathbf{a}}\mathbf{u}\| = \frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|} = \|\mathbf{u}\| |\cos \theta|$ .
- ► Show that for  $\mathbf{u} \perp \mathbf{v}$ ,  $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$

### **Cross Product**

- ▶ Only defined for  $\mathbb{R}^3$ .
- ▶  $\mathbf{u} \times \mathbf{v}$  is orthogonal to both  $\mathbf{u}$  and  $\mathbf{v}$ .
- ▶  $\|\mathbf{u} \times \mathbf{v}\|$  represents the area of the parallelogram formed by  $\mathbf{u}$  and  $\mathbf{v}$ .
- ▶  $\|\mathbf{u} \times \mathbf{v} \times \mathbf{w}\|$  represents the area of the parallelepiped formed by  $\mathbf{u}, \mathbf{v}$  and  $\mathbf{w}$ .