MA-110 Linear Algebra

Nazar Khan

PUCIT

8. General Vector Spaces

General Vector Spaces

If a set of objects satisfies some basic properties of vectors in \mathbb{R}^n , then those objects can be treated as vectors too.

Axiom: An assumption that is taken to be true without proof. They serve as a starting point.

Time to unlearn what we have been taught!

Nazar Khan

Linear Algebra

General Vector Spaces

Any object can be treated as a vector.

Operator '+' can be redefined according to our needs.

Operator ' \times ' can be redefined according to our needs.

Addition of objects

- Let V be a set of objects and u, v and w be members of this set.
- ► Addition is defined as an operator on objects in V.
- ▶ Denoted by the symbol '+'.
- Result $\mathbf{u} + \mathbf{v}$ of addition is called the *sum*.

Scalar multiplication of objects

- Let *k* be any scalar.
- ► Scalar multiplication is defined as an operator on objects in V.
- Denoted by the symbol '×'.
- Result ku of multiplication is called the product.

So far in your life, V has been the set of real numbers. But what stops it from being a set of other (any) kinds of objects!

General Vector Spaces

- Notice that for real vector spaces, u + v and ku were still members of V.
- If the objects in a general set V also satisfy these properties, then they also form a vector space.
- Specifically, to qualify as a vector space, objects in V must satisfy
 - 1. $\mathbf{u} + \mathbf{v} \in V$ Closure under addition

2.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

3.
$$u + (v + w) = (u + v) + w$$

4.
$$\mathbf{u} + \mathbf{0} = \mathbf{u}$$
 and $\mathbf{0} \in V$

Zero vector

5.
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$
 for every \mathbf{u} and $-\mathbf{u} \in V$ N
6. $k\mathbf{u} \in V$

Negative Closure under scalar multiplication

7.
$$k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$$

8.
$$(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$$

9.
$$k(m\mathbf{u}) = (km)\mathbf{u}$$

10.
$$1u = u$$

Nazar Khan

General Vector Spaces

- u could be an *n*-tuple, a 2-D array (matrix), an *N*-D array (tensor), an image, a video, a document, an X-ray, a brain-scan, an email, ...
- As long as the objects satisfy the 10 vector space axioms, they can be treated as vectors in a general vector space.

Examples of sets that are vector spaces

- The zero vector space.
- ▶ \mathbb{R}^n .
- $\triangleright \mathbb{R}^{\infty}.$
- $\mathbb{R}^{m \times n}$ the set of all $m \times n$ matrices.
- The vector space of real-valued functions.

Examples of sets that are not vector spaces

- ▶ \mathbb{R}^{n+} the set of *n*-tuples of positive real numbers. Why?
- V = ℝ² with scalar multiplication defined as ku = (ku₁, 0). Why?

Subspaces

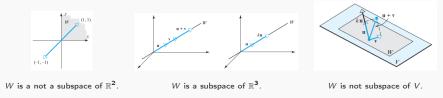
A subset W of vector space V is called a *subspace* of V if W is itself a vector space.

- ► Any subset of a vector space will automatically satisfy axioms 2, 3, 7, 8, 9 and 10.
- If it satisfies 1 and 6 (additive and multiplicative closures), then it will also satisfy 4 and 5. Why?
 - For $\mathbf{u} \in W$, axiom 6 implies $k\mathbf{u} \in W$.
 - Setting k = 0 and k = -1 implies $\mathbf{0} \in W$ and $-\mathbf{u} \in W$.
 - Finally axiom 1 then implies axioms 4 and 5 are true.
- Therefore, to verify if a subset W of vector space V is a subspace of V, one only needs to verify if objects in W satisfy axioms 1 and 6 (*i.e.* is W closed under addition and scalar multiplication?).

Subspaces

Subspaces Examples

- \mathbb{R}^{2++} is a subset but not a subspace of \mathbb{R}^2 .
- ► Any line through the origin is a subspace of R². All other lines are just subsets since they do not contain a 0 vector.
- ► Any line or plane through the origin is a subspace of ℝ³. All other lines and planes are just subsets.
- Symmetric matrices constitute a subspace of the vector space of all square matrices.



Subspaces

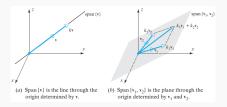
Span

Span of a set of vectors u₁, u₂, ..., u_r is the set of all vectors that can be generated from their *linear combinations*.

 $span(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_r)=k_1\mathbf{u}_1+k_2\mathbf{u}_2+\cdots+k_r\mathbf{u}_r$

where the *coefficients* k_i are scalars between $-\infty$ and ∞ .

- Span of **u** is *k***u** which is a line in the direction of **u**.
- Span of \mathbf{u} an \mathbf{v} is a plane containing both vectors.
- Span of standard unit vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ is \mathbb{R}^n .



Testing for Linear Combination

Consider the vectors $\mathbf{u} = (1, 2, -1)$ and $\mathbf{v} = (6, 4, 2)$ in \mathbb{R}^3 . Show that $\mathbf{w} = (9, 2, 7)$ is a linear combination of \mathbf{u} and \mathbf{v} and that $\mathbf{w}' = (4, -1, 8)$ is not a linear combination of \mathbf{u} and \mathbf{v} .

Testing for spanning

Determine whether the vectors $\mathbf{v}_1 = (1, 1, 2), \mathbf{v}_2 = (1, 0, 1), \text{ and } \mathbf{v}_3 = (2, 1, 3)$ span the vector space \mathbb{R}^3 . If $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 span \mathbb{R}^3 , then $\mathbf{b} = k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_3\mathbf{v}_3$ should be

true for all $b\in \mathbb{R}^3.$ This can be written as

$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

This linear system has a solution for all **b** if and only if the system matrix is invertible. This one is not. So v_1, v_2 and v_3 do not span \mathbb{R}^3 .

Linear Independence

Definition

Set $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r}$ of two or more vectors in a vector space V, is a *linearly independent set* if no vector in S can be expressed as a linear combination of the others. A set that is not linearly independent is said to be linearly dependent.

Test for linear independence

 ${\cal S}$ is linearly independent if and only if the only coefficients satisfying the vector equation

$$k_1\mathbf{v}_1+k_2\mathbf{v}_2+\cdots+k_r\mathbf{v}_r=\mathbf{0}$$

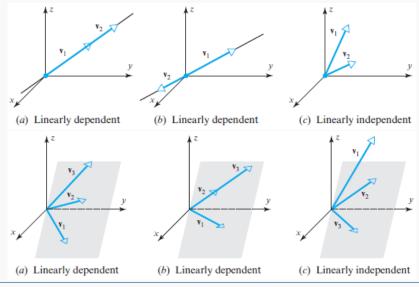
are $k_1 = 0, k_2 = 0, \ldots, k_r = 0$.

Proof by contradiction.

Linear Independence

Determine whether the vectors $\mathbf{v}_1 = (1, -2, 3), \mathbf{v}_2 = (5, 6, -1), \mathbf{v}_3 = (3, 2, 1)$ are linearly independent or not.

Linear Independence Geometric Interpretation



Linear Independence

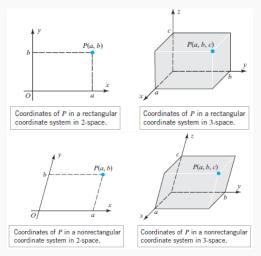
Let $S = \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ be a set of r vectors in \mathbb{R}^n . If r > n, then S must be linearly dependent.

Proof:

The equation $k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \cdots + k_r\mathbf{v}_r = \mathbf{0}$ corresponds to a homogenous linear system with *n* equations and *r* unknowns. For r > n, it will have non-trivial solutions and hence the set *S* will be linearly dependent.

Coordinate Systems

- ▶ We usually work in *rectangular coordinate systems*.
- They are convenient but not necessary.



Linear Algebra

Non-rectangular, unequal coordinate systems

