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General Vector Spaces

If a set of objects satisfies some basic properties of vectors in
Rn, then those objects can be treated as vectors too.

Axiom: An assumption that is taken to be true without proof.
They serve as a starting point.
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Time to unlearn what we have been taught!
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General Vector Spaces

Any object can be treated as a vector.

Operator ‘+’ can be redefined according to our needs.

Operator ‘×’ can be redefined according to our needs.
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Addition of objects

I Let V be a set of objects and u, v and w be members of this
set.

I Addition is defined as an operator on objects in V .
I Denoted by the symbol ‘+’.
I Result u + v of addition is called the sum.
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Scalar multiplication of objects

I Let k be any scalar.
I Scalar multiplication is defined as an operator on objects in V .
I Denoted by the symbol ‘×’.
I Result ku of multiplication is called the product.

So far in your life, V has been the set of real numbers. But
what stops it from being a set of other (any) kinds of objects!
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General Vector Spaces

I Notice that for real vector spaces, u + v and ku were still
members of V .

I If the objects in a general set V also satisfy these properties,
then they also form a vector space.

I Specifically, to qualify as a vector space, objects in V must
satisfy

1. u + v ∈ V Closure under addition
2. u + v = v + u
3. u + (v + w) = (u + v) + w
4. u + 0 = u and 0 ∈ V Zero vector
5. u + (−u) = 0 for every u and −u ∈ V Negative
6. ku ∈ V Closure under scalar multiplication
7. k(u + v) = ku + kv
8. (k +m)u = ku +mu
9. k(mu) = (km)u

10. 1u = u
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General Vector Spaces

I u could be an n-tuple, a 2-D array (matrix), an N-D array
(tensor), an image, a video, a document, an X-ray, a
brain-scan, an email, . . .

I As long as the objects satisfy the 10 vector space
axioms, they can be treated as vectors in a general
vector space.

Nazar Khan Linear Algebra



General Vector Spaces Subspaces Linear Independence Coordinates and Basis

Examples of sets that are vector spaces

I The zero vector space.
I Rn.
I R∞.
I Rm×n – the set of all m × n matrices.
I The vector space of real-valued functions.
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Examples of sets that are not vector spaces

I Rn+ – the set of n-tuples of positive real numbers. Why?
I V = R2 with scalar multiplication defined as ku = (ku1, 0).

Why?
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Subspaces

A subset W of vector space V is called a subspace of V if W
is itself a vector space.

I Any subset of a vector space will automatically satisfy axioms
2, 3, 7, 8, 9 and 10.

I If it satisfies 1 and 6 (additive and multiplicative closures),
then it will also satisfy 4 and 5. Why?

I For u ∈W , axiom 6 implies ku ∈W .
I Setting k = 0 and k = −1 implies 0 ∈W and −u ∈W .
I Finally axiom 1 then implies axioms 4 and 5 are true.

I Therefore, to verify if a subset W of vector space V is a
subspace of V , one only needs to verify if objects in W satisfy
axioms 1 and 6 (i.e. is W closed under addition and scalar
multiplication?).
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Subspaces
Examples

I R2++ is a subset but not a subspace of R2.
I Any line through the origin is a subspace of R2. All other lines

are just subsets since they do not contain a 0 vector.
I Any line or plane through the origin is a subspace of R3. All

other lines and planes are just subsets.
I Symmetric matrices constitute a subspace of the vector space

of all square matrices.

W is a not a subspace of R2. W is a subspace of R3. W is not subspace of V .
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Span

I Span of a set of vectors u1,u2, . . . ,ur is the set of all vectors
that can be generated from their linear combinations.

span(u1,u2, . . . ,ur ) = k1u1 + k2u2 + · · ·+ krur

where the coefficients ki are scalars between −∞ and ∞.
I Span of u is ku which is a line in the direction of u.
I Span of u an v is a plane containing both vectors.
I Span of standard unit vectors e1, e2, . . . , en is Rn.
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Testing for Linear Combination

Consider the vectors u = (1, 2,−1) and v = (6, 4, 2) in R3. Show
that w = (9, 2, 7) is a linear combination of u and v and that
w′ = (4,−1, 8) is not a linear combination of u and v.
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Testing for spanning

Determine whether the vectors
v1 = (1, 1, 2), v2 = (1, 0, 1), and v3 = (2, 1, 3) span the vector
space R3.
If v1, v2 and v3 span R3, then b = k1v1 + k2v2 + k3v3 should be
true for all b ∈ R3. This can be written as1 1 2

1 0 1
2 1 3

k1
k2
k3

 =

b1
b2
b3


This linear system has a solution for all b if and only if the system
matrix is invertible. This one is not. So v1, v2 and v3 do not span
R3.
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Linear Independence

Definition

Set S = {v1, v2, . . . , vr} of two or more vectors in a vector
space V , is a linearly independent set if no vector in S can
be expressed as a linear combination of the others. A set that
is not linearly independent is said to be linearly dependent.

Test for linear independence

S is linearly independent if and only if the only coefficients
satisfying the vector equation

k1v1 + k2v2 + · · ·+ krvr = 0

are k1 = 0, k2 = 0, . . . , kr = 0.

Proof by contradiction.
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Linear Independence

Determine whether the vectors
v1 = (1,−2, 3), v2 = (5, 6,−1), v3 = (3, 2, 1) are linearly
independent or not.
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Linear Independence
Geometric Interpretation
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Linear Independence

Let S = v1, v2, . . . , vr be a set of r vectors in Rn. If r > n,
then S must be linearly dependent.

Proof:
The equation k1v1 + k2v2 + · · ·+ krvr = 0 corresponds to a
homogenous linear system with n equations and r unknowns. For
r > n, it will have non-trivial solutions and hence the set S will be
linearly dependent.
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Coordinate Systems

I We usually work in rectangular coordinate systems.
I They are convenient but not necessary.
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Non-rectangular, unequal coordinate systems
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