MA-110 Linear Algebra

Nazar Khan

PUCIT

9. Basis

Basis

If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ is a set of vectors in a finitedimensional vector space V, then S is called a basis for V if:

- **1.** S spans V.
- 2. *S* is linearly independent.

Examples:

- Standard basis for \mathbb{R}^n .
- Any set of *n* linearly independent vectors in ℝⁿ. (Show that the vectors v₁ = (1,2,1), v₂ = (2,9,0), and v₃ = (3,3,4) form a basis for ℝ³.)
- Standard basis for M_{mn}.

Benefit of Basis

If $S = {v_1, v_2, \dots, v_n}$ is a basis for a vector space V, then every vector **v** in V can be expressed in the form $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$ $c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$ in exactly one way. **Proof**: S is a basis \implies v can be expressed in *some* way. Assume $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$ and also $\mathbf{v} = k_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$ $k_2 \mathbf{v}_2 + \cdots + k_n \mathbf{v}_n$ Subtracting both leads to $\mathbf{0} = (c_1 - k_1)\mathbf{v}_1 + (c_2 - k_2)\mathbf{v}_2 + \mathbf{v}_2$ $\cdots + (c_n - k_n)\mathbf{v}_n$ Linear independence of $S \implies (c_i - k_i) = 0$. Therefore, there can be exactly one representation of \mathbf{v} in a basis.

Scalers c_1, c_2, \ldots, c_n are called *coordinates* of **v** relative to basis *S*. Vector (c_1, c_2, \ldots, c_n) is called the *coordinate vector* of **v** relative to basis *S*.

Dimension

Dimension

- The number of vectors in a basis for V is called the *dimension* of V.
- ▶ Denoted as dim(V).
- ► All basis of V must have the same dimension. Why?
- Zero vector space has dimension 0. That is $dim({0}) = 0$.
- In engineering as well as computer science, dimension is sometimes referred to as *degrees of freedom*.

Plus/Minus Theorem

Consequences:

- ► If V has dimension n, then for any subset S = {v₁, v₂,..., v_n}, it suffices to check *either* linear independence *or* spanning the remaining condition will hold automatically.
- ▶ If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
- If S is a linearly independent set that is not already a basis for V.

Dimension Geometric view

Change of Basis

- Note that both {(1,0), (0,1)} and {(1,1), (2,1)} are valid bases for ℝ².
- But $\{(1,0), (0,1)\}$ is more convenient and commonly used.
- A basis that is suitable for one problem may not be suitable for another.
- So it is common to change from one basis to another.
- ► A *fixed* vector v in vector space V will have different coordinates relative to basis B and basis B'. Denoted by [v]_B and [v]_{B'} respectively.
- ► We will see how the new representation [v]_{B'} is related to the old representation [v]_B.

- Let $B = {\mathbf{u}_1, \mathbf{u}_2}$ and $B' = {\mathbf{u}'_1, \mathbf{u}'_2}$ be bases for $V = \mathbb{R}^2$.
- Let \mathbf{u}_1' and \mathbf{u}_2' be represented in the old basis B as

$$[\mathbf{u}_1']_B = \begin{bmatrix} a \\ b \end{bmatrix}$$
 and $[\mathbf{u}_2']_B = \begin{bmatrix} c \\ d \end{bmatrix}$

That is

$$\mathbf{u}_1' = a\mathbf{u}_1 + b\mathbf{u}_2$$
$$\mathbf{u}_2' = c\mathbf{u}_1 + d\mathbf{u}_2$$

For any vector **v** in V, let it's coordinates in basis B' be

$$[\mathbf{v}]_{B'} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

That is

$$\mathbf{v} = k_1 \mathbf{u}_1' + k_2 \mathbf{u}_2' = k_1 (a \mathbf{u}_1 + b \mathbf{u}_2) + k_2 (c \mathbf{u}_1 + d \mathbf{u}_2)$$

= $(k_1 a + k_2 c) \mathbf{u}_1 + (k_1 b + k_2 d) \mathbf{u}_2$

▶ Therefore, representation of \mathbf{v} in the old basis B is given by

$$[\mathbf{v}]_B = \begin{bmatrix} k_1 a + k_2 c \\ k_1 b + k_2 d \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} [\mathbf{u}'_1]_B & [\mathbf{u}'_2]'_B \end{bmatrix} [\mathbf{v}]_{B'}$$

More generally

$$[\mathbf{v}]_B = \underbrace{\left[[\mathbf{u}'_1]_B \quad \dots \quad [\mathbf{u}'_n]_B \right]}_{n \times n} [\mathbf{v}]_{B'} = P_{B' \to B} [\mathbf{v}]_{B'}$$

- Matrix P_{B'→B}[v]_{B'} is called the *transition matrix* from basis B' to B.
- Similarly, the reverse transformation matrix is given by

$$P_{B\to B'} = \begin{bmatrix} [\mathbf{u}_1]_{B'} & \dots & [\mathbf{u}_n]_{B'} \end{bmatrix}$$

The columns of the transition matrix from an old basis to a new basis are the coordinate vectors of the old basis relative to the new basis.

Change of Basis

• Consider the bases $B = {\mathbf{u}_1, \mathbf{u}_2}$ and $B' = {\mathbf{u}'_1, \mathbf{u}'_2}$ for \mathbb{R}^2 , where

$$u_1 = (1,0), u_2 = (0,1), u_1' = (1,1), u_2' = (2,1)$$

1. Find the transition matrix $P_{B'\to B}$ from B' to B. **2.** Find the transition matrix $P_{B\to B'}$ from B to B'.

Since they have opposite effects

$$P_{B'\to B} = P_{B\to B'}^{-1}$$
$$P_{B\to B'} = P_{B'\to B}^{-1}$$

• A procedure for computing $P_{B \rightarrow B'}$.

- **1.** Form the matrix [B'|B].
- 2. Use elementary row operations to reduce the matrix in step 1 to reduced row echelon form.
- **3.** The resulting matrix will be $[I|P_{B\to B'}]$.
- 4. Extract the matrix $P_{B \rightarrow B'}$ from the right side of the matrix in step 3.

[new basis | old basis] $\xrightarrow{\text{row ops.}}$ [I | transition from old to new]

Row Space, Column Space, and Null Space

Let A be an $m \times n$ matrix.

The subspace of \mathbb{R}^n spanned by the row vectors of A is called the *row space of* A.

The subspace of \mathbb{R}^m spanned by the column vectors of A is called the *column space of* A.

The solution space of the homogeneous system of equations $A\mathbf{x} = \mathbf{0}$, which is a subspace of \mathbb{R}^n , is called the *null space of* A.

These three spaces are denoted by row(A), col(A), and null(A) respectively.

A system of linear equations Ax = b is consistent if and only if b is in the column space of A. Why?

Basis for row and column spaces For matrix in row echelon form

- If a matrix R is in row echelon form, then
 - row vectors with leading 1's form a basis for the row space of R, and
 - column vectors with leading 1's of the row vectors form a basis for the column space of *R*.

$$R = \begin{bmatrix} 1 & -2 & 5 & 0 & 3 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Basis for row space of R

Basis for column space of R

$$\mathbf{r}_1 = \begin{bmatrix} 1 & -2 & 5 & 0 & 3 \end{bmatrix} \\ \mathbf{r}_2 = \begin{bmatrix} 0 & 1 & 3 & 0 & 0 \end{bmatrix} \\ \mathbf{r}_3 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{c}_{1} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \mathbf{c}_{2} = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \mathbf{c}_{4} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$

Nazar Khan

Linear Algebra

Basis for row space via row reduction

• EROs do not change the row space.

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix} \xrightarrow{EROs} R = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Nonzero row vectors of R form a basis for the row space of R and hence form a basis for the row space of A as well.

Basis for column space via row reduction

- EROs change the column space.
- Column vectors of R corresponding to the leading 1's form a basis for the column space of R (but not A).
- ► The corresponding columns of *A* form a basis for the column space of *A*.

$$\mathbf{c}_1 = \begin{bmatrix} 1\\ 2\\ 2\\ -1 \end{bmatrix}, \mathbf{c}_2 = \begin{bmatrix} 4\\ 9\\ 9\\ -4 \end{bmatrix}, \mathbf{c}_4 = \begin{bmatrix} 5\\ 8\\ 9\\ -5 \end{bmatrix}$$

Rank and Nullity

Rank(A) = dim(row space of A) = dim(column space of A).

 $\operatorname{Rank}(A) \leq \min(m, n)$ for $m \times n$ matrix A.

Nullity(A)=dim(null space of A)= # of free variables.

Dimension Theorem for Matrices If A is a matrix with n columns, then

rank(A) + nullity(A) = n

Proof: Linear system will have n variables of 2 types – i) leading, and ii) free.