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Basis

If S = {v1, v2, . . . , vn} is a set of vectors in a finite-
dimensional vector space V , then S is called a basis for V if:

1. S spans V .
2. S is linearly independent.

Examples:
I Standard basis for Rn.
I Any set of n linearly independent vectors in Rn. (Show that

the vectors v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 = (3, 3, 4)
form a basis for R3.)

I Standard basis for Mmn.
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Benefit of Basis

If S = {v1, v2, . . . , vn} is a basis for a vector space V , then
every vector v in V can be expressed in the form v = c1v1 +
c2v2 + · · ·+ cnvn in exactly one way.
Proof: S is a basis =⇒ v can be expressed in some way.
Assume v = c1v1 + c2v2 + · · · + cnvn and also v = k1v1 +
k2v2 + · · ·+ knvn.
Subtracting both leads to 0 = (c1 − k1)v1 + (c2 − k2)v2 +
· · ·+ (cn − kn)vn.
Linear independence of S =⇒ (ci − ki ) = 0. Therefore,
there can be exactly one representation of v in a basis.

Scalers c1, c2, . . . , cn are called coordinates of v relative to basis S .
Vector (c1, c2, . . . , cn) is called the coordinate vector of v relative
to basis S .
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Dimension

I The number of vectors in a basis for V is called the dimension
of V .

I Denoted as dim(V ).
I All basis of V must have the same dimension. Why?
I Zero vector space has dimension 0. That is dim({0}) = 0.
I In engineering as well as computer science, dimension is

sometimes referred to as degrees of freedom.
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Plus/Minus Theorem

Consequences:
I If V has dimension n, then for any subset S = {v1, v2, . . . , vn},

it suffices to check either linear independence or spanning –
the remaining condition will hold automatically.

I If S spans V but is not a basis for V , then S can be reduced
to a basis for V by removing appropriate vectors from S .

I If S is a linearly independent set that is not already a basis for
V .
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Dimension
Geometric view

Nazar Khan Linear Algebra



Dimension Change of Basis Row Space, Column Space, and Null Space Rank, Nullity, and the Fundamental Matrix Spaces

Change of Basis

I Note that both {(1, 0), (0, 1)} and {(1, 1), (2, 1)} are valid
bases for R2.

I But {(1, 0), (0, 1)} is more convenient and commonly used.
I A basis that is suitable for one problem may not be suitable for

another.
I So it is common to change from one basis to another.
I A fixed vector v in vector space V will have different

coordinates relative to basis B and basis B ′. Denoted by [v]B
and [v]B′ respectively.

I We will see how the new representation [v]B′ is related to the
old representation [v]B .
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Change of Basis

I Let B = {u1,u2} and B ′ = {u′1,u′2} be bases for V = R2.
I Let u′1 and u′2 be represented in the old basis B as

[u′1]B =

[
a
b

]
and [u′2]B =

[
c
d

]
That is

u′1 = au1 + bu2

u′2 = cu1 + du2
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Change of Basis

I For any vector v in V , let it’s coordinates in basis B ′ be

[v]B′ =

[
k1
k2

]
That is

v = k1u′1 + k2u′2 = k1(au1 + bu2) + k2(cu1 + du2)

= (k1a+ k2c)u1 + (k1b + k2d)u2

I Therefore, representation of v in the old basis B is given by

[v]B =

[
k1a+ k2c
k1b + k2d

]
=

[
a c
b d

] [
k1
k2

]
=
[
[u′1]B [u′2]

′
B

]
[v]B′
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Change of Basis

I More generally

[v]B =
[
[u′1]B . . . [u′n]B

]︸ ︷︷ ︸
n×n

[v]B′ = PB′→B [v]B′

I Matrix PB′→B [v]B′ is called the transition matrix from basis
B ′ to B .

I Similarly, the reverse transformation matrix is given by

PB→B′ =
[
[u1]B′ . . . [un]B′

]
The columns of the transition matrix from an old basis to a
new basis are the coordinate vectors of the old basis relative
to the new basis.
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Change of Basis

I Consider the bases B = {u1,u2} and B ′ = {u′1,u′2} for R2,
where

u1 = (1, 0),u2 = (0, 1),u′1 = (1, 1),u′2 = (2, 1)

1. Find the transition matrix PB′→B from B ′ to B.
2. Find the transition matrix PB→B′ from B to B ′.
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Change of Basis

I Since they have opposite effects

PB′→B = P−1
B→B′

PB→B′ = P−1
B′→B

I A procedure for computing PB→B′ .
1. Form the matrix [B ′|B].
2. Use elementary row operations to reduce the matrix in step 1

to reduced row echelon form.
3. The resulting matrix will be [I |PB→B′ ].
4. Extract the matrix PB→B′ from the right side of the matrix in

step 3.

[new basis | old basis]
row ops.−−−−−→ [I | transition from old to new]
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Row Space, Column Space, and Null Space

Let A be an m × n matrix.

The subspace of Rn spanned by the row vectors of A is called
the row space of A.

The subspace of Rm spanned by the column vectors of A is
called the column space of A.

The solution space of the homogeneous system of equations
Ax = 0, which is a subspace of Rn, is called the null space of
A.

These three spaces are denoted by row(A), col(A), and null(A)
respectively.
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I A system of linear equations Ax = b is consistent if and only if
b is in the column space of A. Why?

I
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Basis for row and column spaces
For matrix in row echelon form

I If a matrix R is in row echelon form, then
I row vectors with leading 1’s form a basis for the row space of

R, and
I column vectors with leading 1’s of the row vectors form a basis

for the column space of R.

R =


1 −2 5 0 3
0 1 3 0 0
0 0 0 1 0
0 0 0 0 0


Basis for row space of R

r1 =
[
1 −2 5 0 3

]
r2 =

[
0 1 3 0 0

]
r3 =

[
0 0 0 1 0

]
Basis for column space of R

c1 =


1
0
0
0

 , c2 =


−2
1
0
0

 , c4 =


0
0
1
0
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Basis for row space via row reduction

I EROs do not change the row space.

A =


1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7
−1 3 −4 2 −5 −4

 EROs−−−→ R =


1 −3 4 −2 5 4
0 0 1 3 −2 −6
0 0 0 0 1 5
0 0 0 0 0 0


I Nonzero row vectors of R form a basis for the row space of R

and hence form a basis for the row space of A as well.

r1 =
[
1 −3 4 −2 5 4

]
r2 =

[
0 0 1 3 −2 −6

]
r3 =

[
0 0 0 0 1 5

]
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Basis for column space via row reduction

I EROs change the column space.
I Column vectors of R corresponding to the leading 1’s form a

basis for the column space of R (but not A).
I The corresponding columns of A form a basis for the column

space of A.

c1 =


1
2
2
−1

 , c2 =


4
9
9
−4

 , c4 =


5
8
9
−5
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Rank and Nullity

Rank(A)=dim(row space of A)=dim(column space of A).

Rank(A) ≤ min(m, n) for m × n matrix A.

Nullity(A)=dim(null space of A)= # of free variables.

Dimension Theorem for Matrices
If A is a matrix with n columns, then

rank(A) + nullity(A) = n

Proof: Linear system will have n variables of 2 types – i) leading,
and ii) free.
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