MA-110 Linear Algebra

Nazar Khan

PUCIT
9. Basis

Basis

If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a set of vectors in a finitedimensional vector space V, then S is called a basis for V if:

1. S spans V.
2. S is linearly independent.

Examples:

- Standard basis for \mathbb{R}^{n}.
- Any set of n linearly independent vectors in \mathbb{R}^{n}. (Show that the vectors $\mathbf{v}_{1}=(1,2,1), \mathbf{v}_{2}=(2,9,0)$, and $\mathbf{v}_{3}=(3,3,4)$ form a basis for \mathbb{R}^{3}.)
- Standard basis for $M_{m n}$.

Benefit of Basis

If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then every vector \mathbf{v} in V can be expressed in the form $\mathbf{v}=c_{1} \mathbf{v}_{1}+$ $c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}$ in exactly one way.
Proof: S is a basis $\Longrightarrow \mathbf{v}$ can be expressed in some way. Assume $\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}$ and also $\mathbf{v}=k_{1} \mathbf{v}_{1}+$ $k_{2} \mathbf{v}_{2}+\cdots+k_{n} \mathbf{v}_{n}$.
Subtracting both leads to $\mathbf{0}=\left(c_{1}-k_{1}\right) \mathbf{v}_{1}+\left(c_{2}-k_{2}\right) \mathbf{v}_{2}+$ $\cdots+\left(c_{n}-k_{n}\right) \mathbf{v}_{n}$.
Linear independence of $S \Longrightarrow\left(c_{i}-k_{i}\right)=0$. Therefore, there can be exactly one representation of v in a basis.

Scalers $c_{1}, c_{2}, \ldots, c_{n}$ are called coordinates of v relative to basis S. Vector $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is called the coordinate vector of v relative to basis S.

- The number of vectors in a basis for V is called the dimension of V.
- Denoted as $\operatorname{dim}(V)$.
- All basis of V must have the same dimension. Why?
- Zero vector space has dimension 0 . That is $\operatorname{dim}(\{0\})=0$.
- In engineering as well as computer science, dimension is sometimes referred to as degrees of freedom.

Plus/Minus Theorem

The vector outside the plane can be adjoined to the other two without affecting their linear independence.

Any of the vectors can be removed, and the remaining two will still span the plane.

Either of the collinear vectors can be removed, and the remaining two will still span the plane.

Consequences:

- If V has dimension n, then for any subset $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$, it suffices to check either linear independence or spanning the remaining condition will hold automatically.
- If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
- If S is a linearly independent set that is not already a basis for V.

Change of Basis

- Note that both $\{(1,0),(0,1)\}$ and $\{(1,1),(2,1)\}$ are valid bases for \mathbb{R}^{2}.
- But $\{(1,0),(0,1)\}$ is more convenient and commonly used.
- A basis that is suitable for one problem may not be suitable for another.
- So it is common to change from one basis to another.
- A fixed vector v in vector space V will have different coordinates relative to basis B and basis B^{\prime}. Denoted by $[\mathbf{v}]_{B}$ and $[\mathbf{v}]_{B^{\prime}}$ respectively.
- We will see how the new representation $[\mathbf{v}]_{B^{\prime}}$ is related to the old representation $[\mathbf{v}]_{B}$.

Change of Basis

- Let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $B^{\prime}=\left\{\mathbf{u}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}\right\}$ be bases for $V=\mathbb{R}^{2}$.
- Let \mathbf{u}_{1}^{\prime} and \mathbf{u}_{2}^{\prime} be represented in the old basis B as

$$
\left[\mathbf{u}_{1}^{\prime}\right]_{B}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \text { and }\left[\mathbf{u}_{2}^{\prime}\right]_{B}=\left[\begin{array}{l}
c \\
d
\end{array}\right]
$$

That is

$$
\begin{aligned}
& \mathbf{u}_{1}^{\prime}=a \mathbf{u}_{1}+b \mathbf{u}_{2} \\
& \mathbf{u}_{2}^{\prime}=c \mathbf{u}_{1}+d \mathbf{u}_{2}
\end{aligned}
$$

Change of Basis

- For any vector \mathbf{v} in V, let it's coordinates in basis B^{\prime} be

$$
[\mathbf{v}]_{B^{\prime}}=\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]
$$

That is

$$
\begin{aligned}
\mathbf{v}=k_{1} \mathbf{u}_{1}^{\prime}+k_{2} \mathbf{u}_{2}^{\prime} & =k_{1}\left(a \mathbf{u}_{1}+b \mathbf{u}_{2}\right)+k_{2}\left(c \mathbf{u}_{1}+d \mathbf{u}_{2}\right) \\
& =\left(k_{1} a+k_{2} c\right) \mathbf{u}_{1}+\left(k_{1} b+k_{2} d\right) \mathbf{u}_{2}
\end{aligned}
$$

- Therefore, representation of v in the old basis B is given by

$$
[\mathbf{v}]_{B}=\left[\begin{array}{l}
k_{1} a+k_{2} c \\
k_{1} b+k_{2} d
\end{array}\right]=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]=\left[\begin{array}{ll}
{\left[\mathbf{u}_{1}^{\prime}\right]_{B}} & \left.\left[\mathbf{u}_{2}^{\prime}\right]_{B}^{\prime}\right][\mathbf{v}]_{B^{\prime}}
\end{array}\right.
$$

Change of Basis

- More generally

$$
[\mathbf{v}]_{B}=\underbrace{\left[\begin{array}{lll}
{\left[\mathbf{u}_{1}^{\prime}\right]_{B}} & \ldots & {\left[\mathbf{u}_{n}^{\prime}\right]_{B}}
\end{array}\right]}_{n \times n}[\mathbf{v}]_{B^{\prime}}=P_{B^{\prime} \rightarrow B}[\mathbf{v}]_{B^{\prime}}
$$

- Matrix $P_{B^{\prime} \rightarrow B}[\mathbf{v}]_{B^{\prime}}$ is called the transition matrix from basis B^{\prime} to B.
- Similarly, the reverse transformation matrix is given by

$$
P_{B \rightarrow B^{\prime}}=\left[\begin{array}{lll}
{\left[\mathbf{u}_{1}\right]_{B^{\prime}}} & \ldots & {\left[\mathbf{u}_{n}\right]_{B^{\prime}}}
\end{array}\right]
$$

The columns of the transition matrix from an old basis to a new basis are the coordinate vectors of the old basis relative to the new basis.

Change of Basis

- Consider the bases $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $B^{\prime}=\left\{\mathbf{u}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}\right\}$ for \mathbb{R}^{2}, where

$$
\mathbf{u}_{1}=(1,0), \mathbf{u}_{2}=(0,1), \mathbf{u}_{1}^{\prime}=(1,1), \mathbf{u}_{2}^{\prime}=(2,1)
$$

1. Find the transition matrix $P_{B^{\prime} \rightarrow B}$ from B^{\prime} to B.
2. Find the transition matrix $P_{B \rightarrow B^{\prime}}$ from B to B^{\prime}.

Change of Basis

- Since they have opposite effects

$$
\begin{aligned}
& P_{B^{\prime} \rightarrow B}=P_{B \rightarrow B^{\prime}}^{-1} \\
& P_{B \rightarrow B^{\prime}}=P_{B^{\prime} \rightarrow B}^{-1}
\end{aligned}
$$

- A procedure for computing $P_{B \rightarrow B^{\prime}}$.

1. Form the matrix $\left[B^{\prime} \mid B\right]$.
2. Use elementary row operations to reduce the matrix in step 1 to reduced row echelon form.
3. The resulting matrix will be $\left[\left|\mid P_{B \rightarrow B^{\prime}}\right]\right.$.
4. Extract the matrix $P_{B \rightarrow B^{\prime}}$ from the right side of the matrix in step 3.
[new basis | old basis] $\xrightarrow{\text { row ops. }}[1 \mid$ transition from old to new]

Row Space, Column Space, and Null Space

Let A be an $m \times n$ matrix.
The subspace of \mathbb{R}^{n} spanned by the row vectors of A is called the row space of A.

The subspace of \mathbb{R}^{m} spanned by the column vectors of A is called the column space of A.

The solution space of the homogeneous system of equations $A \mathbf{x}=\mathbf{0}$, which is a subspace of \mathbb{R}^{n}, is called the null space of A.

These three spaces are denoted by $\operatorname{row}(A), \operatorname{col}(A)$, and null (A) respectively.

- A system of linear equations $A \mathbf{x}=\mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A. Why?

Basis for row and column spaces

For matrix in row echelon form

- If a matrix R is in row echelon form, then
- row vectors with leading 1's form a basis for the row space of R, and
- column vectors with leading 1's of the row vectors form a basis for the column space of R.

$$
R=\left[\begin{array}{ccccc}
1 & -2 & 5 & 0 & 3 \\
0 & 1 & 3 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Basis for row space of R

$$
\begin{aligned}
& \mathbf{r}_{1}=\left[\begin{array}{lllll}
1 & -2 & 5 & 0 & 3
\end{array}\right] \\
& \mathbf{r}_{2}=\left[\begin{array}{lllll}
0 & 1 & 3 & 0 & 0
\end{array}\right] \\
& \mathbf{r}_{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Basis for column space of R
$\mathbf{c}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$

Basis for row space via row reduction

- EROs do not change the row space.

$$
A=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
2 & -6 & 9 & -1 & 8 & 2 \\
2 & -6 & 9 & -1 & 9 & 7 \\
-1 & 3 & -4 & 2 & -5 & -4
\end{array}\right] \xrightarrow{\text { EROs }} R=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
0 & 0 & 1 & 3 & -2 & -6 \\
0 & 0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Nonzero row vectors of R form a basis for the row space of R and hence form a basis for the row space of A as well.

$$
\begin{aligned}
& \mathbf{r}_{1}=\left[\begin{array}{llllll}
1 & -3 & 4 & -2 & 5 & 4
\end{array}\right] \\
& \mathbf{r}_{2}=\left[\begin{array}{llllll}
0 & 0 & 1 & 3 & -2 & -6
\end{array}\right] \\
& \mathbf{r}_{3}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 5
\end{array}\right]
\end{aligned}
$$

Basis for column space via row reduction

- EROs change the column space.
- Column vectors of R corresponding to the leading 1's form a basis for the column space of R (but not A).
- The corresponding columns of A form a basis for the column space of A.

$$
\mathbf{c}_{1}=\left[\begin{array}{c}
1 \\
2 \\
2 \\
-1
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
4 \\
9 \\
9 \\
-4
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{c}
5 \\
8 \\
9 \\
-5
\end{array}\right]
$$

$\operatorname{Rank}(A)=\operatorname{dim}($ row space of $A)=\operatorname{dim}($ column space of $A)$.
$\operatorname{Rank}(A) \leq \min (m, n)$ for $m \times n$ matrix A.
$\operatorname{Nullity}(A)=\operatorname{dim}($ null space of $A)=\#$ of free variables.

Dimension Theorem for Matrices

If A is a matrix with n columns, then

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

Proof: Linear system will have n variables of 2 types $-i$) leading, and ii) free.

