CS-565 Computer Vision

Nazar Khan

Department of Computer Science
University of the Punjab
10. Transformations

Homogenous Coordinates

- Vectors that we use normally are in Cartesian coordinates and reside in Cartesian space \mathbb{R}^{d}.
- Appending a 1 as the last element of a Cartesian vector yields a vector in homogenous coordinates.

\mathbf{v}	\hat{v}
$\left[\begin{array}{l}x \\ y\end{array}\right]$	$\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

- A homogenous vector resides in the so-called projective space $\mathbb{P}^{d}=\mathbb{R}^{d+1} \backslash \mathbf{0}$.
- Projective space is just Cartesian space with an additional dimension but without an origin.
- Dimensionality of \mathbb{P}^{d} is $d+1$.

Projective Space

- \mathbb{R}^{d} to \mathbb{P}^{d} : Append by 1 .
- \mathbb{P}^{d} to \mathbb{R}^{d} : Divide by last element to make it 1 and then drop it.

$$
\hat{\mathbf{v}}=\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \longrightarrow \mathbf{v}=\left[\begin{array}{l}
x / w \\
y / w
\end{array}\right]
$$

- This means that in projective space, any vector \mathbf{v} and its scaled version kv will project down to the same Cartesian vector.
- That is, \mathbf{v} is projectively equivalent to $k \mathbf{v}$. Written as

$$
\begin{equation*}
\mathbf{v} \equiv k \mathbf{v} \tag{1}
\end{equation*}
$$

for $k \neq 0$.

Affine Transformation in \mathbb{P}^{2}

- Consider the following linear transformation from \mathbb{P}^{2} to \mathbb{P}^{2}

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & e \\
c & d & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Note that the last component will remain unchanged.
- Every affine transformation is invertible.
- Six degrees of freedom (DoF).
- An affine transformation matrix can perform 2D rotation, scaling, shear or translation.
- Any sequence of affine transformations is still affine (look at the last row).

Affine Transformation

Figure: Capabilities of an affine transformation matrix.

Affine Transformation

$$
\begin{gathered}
\text { Scaling } \\
{\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]} \\
x^{\prime}=s_{x} x
\end{gathered}
$$

Shear
Translation
Rotation

$$
\left[\begin{array}{ccc}
1 & s h_{x} & 0 \\
s h_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& x^{\prime}=x+s h_{x} y \\
& y^{\prime}=y+s h_{y} x
\end{aligned}
$$

$$
y^{\prime}=s_{y} y \quad y^{\prime}=y+s h_{y} x
$$

$$
x^{\prime}=x+t_{x} \quad x^{\prime}=x \cos \theta-y \sin \theta
$$

$$
y^{\prime}=y+t_{y} \quad y^{\prime}=x \sin \theta+y \cos \theta
$$

Note that translation cannot be written in matrix-vector form in Cartesian space.

Rotation Matrix

Derivation

For counter-clockwise rotation of \mathbf{v} around origin by θ

$$
\begin{aligned}
x^{\prime} & =r \cos (\phi+\theta)=r \cos \phi \cos \theta-r \sin \phi \sin \theta \\
& =x \cos \theta-y \sin \theta \\
y^{\prime} & =r \sin (\phi+\theta)=r \cos \phi \sin \theta+r \sin \phi \cos \theta \\
& =x \sin \theta+y \cos \theta
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{l}
x^{\prime} \tag{2}\\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Rotation Matrix

Properties

- For any rotation matrix R

1. Each row is orthogonal to the other. Same for columns.
2. Each row has unit norm. Same for columns.

- Such matrices are called orthonormal matrices.

$$
\mathbf{R}^{T} \mathbf{R}=\mathbf{I}
$$

- They preserve length of the vector being transformed.

Rotation around an arbitrary point

Order matters!

Rotation/scaling/shear followed by translation

$$
\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & s h_{x} & 0 \\
s h_{y} & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & s h_{x} & t_{x} \\
s h_{y} & s_{y} & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

is not the same as translation followed by rotation/scaling/shear.

$$
\left[\begin{array}{ccc}
s_{x} & s h_{x} & 0 \\
s h_{y} & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & s h_{x} & s_{x} t_{x}+s h_{x} t_{y} \\
s h_{y} & s_{y} & s h_{y} t_{x}+s_{y} t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Projective Transformation

- Last row of affine transformation matrix is always $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$.
- If this condition is relaxed we obtain the so-called projective transformation.

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]
$$

- Also called homography or collineation since lines are mapped to lines.

Projective Transformation

- Linear in \mathbb{P}^{2} but non-linear in \mathbb{R}^{2} because 3rd coordinate of v^{\prime} is not guaranteed to be 1 .

$$
\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
h_{1} x+h_{2} y+h_{3} \\
h_{4} x+h_{5} y+h_{6} \\
h_{7} x+h_{8} y+h_{9}
\end{array}\right] \Longrightarrow \begin{aligned}
& x^{\prime}=\frac{h_{1} x+h_{2} y+h_{3}}{h_{7} x+h_{y} y+h_{9}} \\
& y^{\prime}=\frac{h_{4} x+h_{5} y+h_{6}}{h_{7} x+h_{8} y+h_{9}}
\end{aligned}
$$

- The 3rd coordinate is now a function of the inputs x and y and division involving them makes the transformation non-linear.

Projective Transformation

- Projective transformation has only 8 degrees of freedom.
- In projective space, $\mathbf{v} \equiv k(\mathbf{v})$ for all $k \neq 0$ because both correspond to the same point in Cartesian space. So

$$
k(\mathbf{v}) \equiv \mathbf{v} \Longrightarrow k(\mathbf{H} \mathbf{v}) \equiv \mathbf{H} \mathbf{v} \Longrightarrow k \mathbf{H} \mathbf{v} \equiv \mathbf{H} \mathbf{v} \Longrightarrow k \mathbf{H} \equiv \mathbf{H}
$$

- Let $\mathbf{H}^{\prime}=\frac{1}{h_{9}} \mathbf{H}$. Clearly, $h_{9}^{\prime}=1$ and therefore \mathbf{H}^{\prime} has 8 free parameters.
- But since $\mathbf{H}^{\prime} \equiv \mathbf{H}, \mathbf{H}$ must also have only 8 free parameters.

Estimation of Affine Transform

- We are given N corresponding points $\mathrm{x}_{1} \Longleftrightarrow \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2} \Longleftrightarrow \mathrm{x}_{2}^{\prime}, \ldots, \mathrm{x}_{N} \Longleftrightarrow \mathrm{x}_{N}^{\prime}$ where $\mathrm{x}_{i}^{\prime}=\mathrm{T} \mathrm{x}_{i}$ represents an affinely transformed point pair.
- Goal is to find the 6 parameters $[a ; b ; e ; c ; d ; f]$ of the affine transformation \mathbf{T} that maps x to x^{\prime}.
- The i th correspondence can be written as

$$
\left[\begin{array}{cccccc}
x_{i} & y_{i} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{i} & y_{i} & 1
\end{array}\right]\left[\begin{array}{c}
s_{x} \\
s h_{x} \\
t_{x} \\
s_{y} \\
s h_{y} \\
t_{y}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime}
\end{array}\right]
$$

Estimation of Affine Transform

- All N correspondences can be written as

$$
\underbrace{\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{N} & y_{N} & \vdots & & 0 & 0 \\
0 & 0 & 0 & x_{N} & y_{N} & 1
\end{array}\right]}_{2 N \times 6} \underbrace{\left[\begin{array}{c}
s_{x} \\
s h_{x} \\
t_{x} \\
s_{y} \\
s h_{y} \\
t_{y}
\end{array}\right]}_{6 \times 1}=\underbrace{\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
\vdots \\
x_{N}^{\prime} \\
y_{N}^{\prime}
\end{array}\right]}_{2 N \times 1}
$$

which can be seen as a linear system $\mathbf{A} \mathbf{v}=\mathbf{b}$.

- Can be solved via pseudoinverse

$$
\mathbf{A} \mathbf{v}=\mathbf{b} \Longrightarrow \mathbf{A}^{T} \mathbf{A} \mathbf{v}=\mathbf{A}^{T} \mathbf{b} \Longrightarrow \mathbf{v}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}=\mathbf{A}^{\dagger} \mathbf{b}
$$

where $\mathbf{A}^{\dagger}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}$ is the $6 \times 2 N$ matrix called the pseudoinverse of A.

Estimation of Affine Transform

Input: N point correspondences $\mathrm{x}_{i} \leftrightarrow \mathrm{x}_{i}^{\prime}$

1. Fill in the $2 N \times 6$ matrix \mathbf{A} using the \mathbf{x}_{i}.
2. Fill in the $2 N \times 1$ vector \mathbf{b} using the x_{i}^{\prime}.
3. Compute $6 \times 2 N$ pseudo-inverse $\mathbf{A}^{\dagger}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}$.
4. Compute optimal affine transformation parameters as $\mathbf{v}^{*}=\mathbf{A}^{\dagger} \mathbf{b}$.

Detour - Cross Product

$$
\mathbf{u} \times \mathbf{v}=\left[\begin{array}{l}
u_{2} v_{3}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
0 & -u_{3} & u_{2} \\
u_{3} & 0 & -u_{1} \\
-u_{2} & u_{1} & 0
\end{array}\right]}_{[\mathbf{u}] \times}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

- Only defined for 3-dimensional space.
- Matrix $[\mathbf{u}]_{\times}$has two linearly independent rows.
- Proof: u_{1} row $1+u_{2}$ row $2+u_{3}$ row $3=\mathbf{0}^{\top} \Longrightarrow$ any row can be written as a linear combination of the other two rows.
- $\mathbf{u} \times \mathbf{v}$ is another 3-dimensional vector orthogonal to both \mathbf{u} and \mathbf{v}.
- $\|\mathbf{u} \times \mathbf{v}\|$ represents the area of the parallelogram formed by \mathbf{u} and \mathbf{v}.

Detour - Cross Product

- If \mathbf{u} and \mathbf{v} point in the same direction, then no parallelogram will be formed.
- Therefore $\|\mathbf{u} \times \mathbf{v}\|$ will be 0 .
- The only vector with norm 0 is the 0 vector.
- Therefore, $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ when \mathbf{u} and \mathbf{v} point in the same direction.

Estimation of Projective Transform

- We are given N corresponding points

$$
\begin{gathered}
\mathrm{x}_{1} \leftrightarrow \mathrm{x}_{1}^{\prime} \\
\mathrm{x}_{2} \leftrightarrow \mathrm{x}_{2}^{\prime} \\
\vdots \\
\mathrm{x}_{N} \leftrightarrow \mathrm{x}_{N}^{\prime}
\end{gathered}
$$

where $\mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}$ represents a projectively transformed point pair.

- Goal is to find the 8 parameters $h_{1}, h_{2} \ldots, h_{8}$ of the projective transformation H that maps the x points to the x^{\prime} points.
- Parameter h_{9} can be fixed to be 1 .
- The i th correspondence can be written as $\mathbf{x}_{i}^{\prime} \equiv \mathbf{H} \mathrm{x}_{i}$ in projective space.

Estimation of Projective Transform

- This implies that the 3-dimensional vectors \mathbf{x}_{i}^{\prime} and $\mathbf{H x}_{i}$ point in the same direction. Their cross-product will be the zero vector.

$$
\begin{aligned}
& \mathrm{x}_{i}^{\prime} \times \mathrm{H} \mathrm{x}_{i}=\mathbf{0} \\
& \Longrightarrow\left[\begin{array}{l}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
w_{i}^{\prime}
\end{array}\right] \times\left[\begin{array}{l}
\mathbf{h}^{1 T} \\
\mathbf{h}^{2 T} \\
\mathbf{h}^{3 T}
\end{array}\right] \mathrm{x}_{i}=\mathbf{0} \text { where } \boldsymbol{h}^{j T} \text { is the } j \text {-th row of } \mathbf{H} \\
& \Longrightarrow\left[\begin{array}{ccc}
0 & -w_{i}^{\prime} & y_{i}^{\prime} \\
w_{i}^{\prime} & 0 & -x_{i}^{\prime} \\
-y_{i}^{\prime} & x_{i}^{\prime} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{h}^{1 T} \mathbf{x}_{i} \\
\mathbf{h}^{2 T} \mathbf{x}_{i} \\
\mathbf{h}^{3 T} \mathbf{x}_{i}
\end{array}\right]=\mathbf{0} \\
& \Longrightarrow\left[\begin{array}{l}
y^{\prime} \mathbf{h}^{3 T} \mathbf{x}_{i}-w_{i}^{\prime} \mathbf{h}^{2 T} \mathbf{x}_{i} \\
w_{i}^{\prime} \mathbf{h}^{T} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}^{3 T} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}^{T} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}^{1 T} \mathbf{x}_{i}
\end{array}\right]=\left[\begin{array}{l}
y_{i}^{\prime} \mathbf{x}_{i}^{T} \mathbf{h}^{3}-w_{i}^{\prime} \mathbf{x}_{i}^{T} \mathbf{h}^{2} \\
w_{i}^{\prime} \mathbf{x}_{i}^{T} \mathbf{h}^{1}-x_{i}^{\prime} \mathbf{x}_{i}^{T} \mathbf{h}^{3} \\
x_{i}^{\prime} \mathbf{x}_{i}^{T} \mathbf{h}^{2}-y_{i}^{\prime} \mathbf{x}_{i}^{T} \mathbf{h}^{1}
\end{array}\right]=\mathbf{0} \\
& \Longrightarrow\left[\begin{array}{ccc}
0^{T} & -w_{i}^{\prime} \mathbf{x}_{i}^{T} & y_{i}^{\prime} \mathbf{x}_{i}^{T} \\
w_{i}^{\prime} \mathbf{x}_{i}^{T} & 0^{T} & -x_{i}^{\prime} \mathbf{x}_{i}^{T} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{T} & x_{i}^{\prime} \mathbf{x}_{i}^{T} & 0^{T}
\end{array}\right]_{3 \times 9}\left[\begin{array}{l}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right]_{9 \times 1}=\mathbf{A}_{i} \mathbf{h}=\mathbf{0}
\end{aligned}
$$

Estimation of Projective Transform

- Matrix \mathbf{A}_{i} has only 2 linearly independent rows.
- So one row can be discarded. Let's denote the resulting 2×9 matrix by A_{i} as well.
- So one correspondence $\mathrm{x}_{i} \Longleftrightarrow \mathrm{x}_{i}^{\prime}$ yields 2 equations.
- Since 8 unknowns require atleast 8 equations, we will need $N \geq 4$ corresponding point pairs.

The points $\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}$ must be non-collinear. Similarly, $\mathrm{x}_{1}^{\prime}, \ldots, \mathrm{x}_{N}^{\prime}$ must also be non-collinear.

Estimation of Projective Transform

- This will yield the homogenous system $\mathbf{A h}=0$ where size of \mathbf{A} is $2 N \times 9$.
- It can be shown that $\operatorname{rank}(\mathbf{A})=8$ and $\operatorname{dim}(\mathbf{A})=9$.
- So nullity of \mathbf{A} is 1 and therefore \mathbf{h} can be found as the null space of \mathbf{A}.
- However, when measurements contain noise (which is always the case with pixel locations) or $N>4$, then no h will exist that satisfies $\mathbf{A h}=0$ exactly.
- In such cases, the best one can do is to find an h that makes $\mathbf{A h}$ as close to 0 as possible. This can be achieved via

$$
\mathbf{h}^{*}=\arg \min _{\mathbf{h}}\|\mathbf{A} \mathbf{h}\|^{2} \text { s.t. }\|\mathbf{h}\|^{2}=1
$$

Take-home Quiz 3: Show that \boldsymbol{h}^{*} must be the eigenvector of $\mathbf{A}^{T} \mathbf{A}$ corresponding to the smallest eigenvalue.

Estimation of Projective Transform

- This can be done via singular value decomposition.

$$
[\mathbf{U}, \mathbf{D}, \mathbf{V}]=\operatorname{svd}(\mathbf{A})
$$

and \mathbf{h} is the last column of the matrix \mathbf{V}.

Estimation of Projective Transform

Input: N point correspondences $\mathrm{x}_{i} \leftrightarrow \mathrm{x}_{i}^{\prime}$

1. Fill in the $2 N \times 9$ matrix \mathbf{A} using the x_{i} and x_{i}^{\prime}.
2. Compute $[\mathbf{U}, \mathbf{D}, \mathbf{V}]=\operatorname{svd}(\mathbf{A})$.
3. Optimal projective transformation parameters \mathbf{h}^{*} are the last column of matrix V .
This algorithm is known as the Direct Linear Transform (DLT). ${ }^{1}$

${ }^{1}$ For some practical tips, please refer to slides $14-17$ from
http://www.ele.puc-rio.br/~visao/Homographies.pdf
Nazar Khan

Image Warping

Original

Affine

Projective

Image Warping

- Inputs: Image I and transformation matrix H.
- Output: Transformed image $I^{\prime}=\mathrm{H} /$.
- Obvious approach:
- For each pixel \mathbf{x} in image I
- Find transformed point $\mathbf{x}^{\prime}=\mathbf{H x}$
- Divide by 3rd coordinate and move to Cartesian space
- Copy the pixel color as $I^{\prime}\left(\mathbf{x}^{\prime}\right)=I(\mathbf{x})$.
- Problem: Can leave holes in I^{\prime}. Why?
- Solution:
- For each pixel \mathbf{x}^{\prime} in image I^{\prime}
- Find transformed point $\mathbf{x}=\mathbf{H}^{-1} \mathbf{x}^{\prime}$
- Divide by 3rd coordinate and move to Cartesian space
- Copy the pixel color as $I^{\prime}\left(\mathbf{x}^{\prime}\right)=I(\mathbf{x})$.
- Problem: Transformed point x is not necessarily integer valued.

Image Warping

Bilinear Interpolation
Find 4 nearest pixel locations around (x, y)

where

$$
\begin{aligned}
& \underline{x}=\lfloor x\rfloor \\
& \underline{y}=\lfloor y\rfloor \\
& \bar{x}=\lfloor x\rfloor+1 \\
& \bar{y}=\lfloor y\rfloor+1
\end{aligned}
$$

Image Warping

Bilinear Interpolation

$$
I(x, y)=\overline{\epsilon_{x}} \overline{\epsilon_{y}} I(\underline{x}, \underline{y})+\underline{\epsilon}_{\underline{x}} \overline{\epsilon_{y}} I(\bar{x}, \underline{y})+\bar{\epsilon}_{x} \epsilon_{\underline{y}} I(\underline{x}, \bar{y})+\underline{\epsilon}_{\underline{x}} \epsilon_{\underline{y}} I(\bar{x}, \bar{y})
$$

