CS-565 Computer Vision

Nazar Khan

Department of Computer Science University of the Punjab

12. Robust Estimation - RANSAC

Outliers

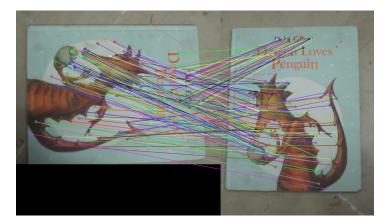


Figure: Correspondences obtained after matching SIFT descriptors. Most correspondences seem to be correct but some *outlier* correspondences can also be seen. Outliers will affect the estimation of the transformation between the two images. Author: N. Khan (2018)

Line Fitting

- ► Given points (x₁, y₁),..., (x_N, y_N), find the parameters (m, c) of the best-fit line.
- One definition of best-fit could be in terms of sum-squared-error (SSE).

$$E(m,c) = \frac{1}{2} \sum_{n=1}^{N} (y_n - mx_n - c)^2$$

so that

$$(m^*, c^*) = \arg\min_{m,c} E(m, c)$$

Outliers

Line Fitting

Equating gradients to zero yields

$$\sum_{n=1}^{N} -x_n(y_n - m^* x_n - c^*) = 0$$
$$\sum_{n=1}^{N} -(y_n - m^* x_n - c^*) = 0$$

Can be written as a linear system

$$\begin{bmatrix} \sum_{n=1}^{N} x_n^2 & \sum_{n=1}^{N} x_n \\ \sum_{n=1}^{N} x_n & \sum_{n=1}^{N} 1 \end{bmatrix} \begin{bmatrix} m^* \\ c^* \end{bmatrix} = \begin{bmatrix} \sum_{n=1}^{N} x_n y_n \\ \sum_{n=1}^{N} y_n \end{bmatrix}$$

▶ In such a fitting squared error due to point (x_n, y_n) is $(y_n - mx_n - c)^2$.

Line Fitting

- For a line that passes through the inliers, the outliers will contribute large values to the SSE.
- Therefore, minimizing SSE will cause the best-fit line to pass closer to the outliers.

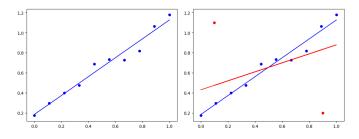


Figure: Best-fit lines for data with **Left**: no outliers and **Right**: outliers. Author: N. Khan (2021)

Robust Estimation via RANSAC

- In the presence of outliers, how can we fit a model robustly?
- One solution is the RANdom Sample And Consensus algorithm¹. Shortened as RANSAC.

Basic Idea

- 1. Choose a small subset of points uniformly at random.
- 2. Fit a model to that subset.
- **3.** Find all points that are 'close' to the model and reject the rest as outliers.
- 4. Repeat step 1-3 many times and choose model with fewest outliers.

¹Fischler and Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography".

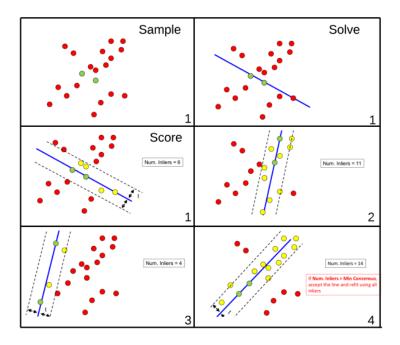
Robust Line Fitting via RANSAC

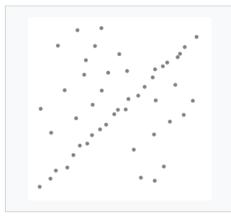
- A line requires at least two points. The RANSAC algorithm applied to line fitting is as follows:
 - 1. Sample:
 - Pick any two points randomly.
 - 2. Solve:
 - Fit a line (m, c) between them.
 - **3.** Consider data point (x_n, y_n) to lie on the line if $(y_n mx_n c)^2 < \tau_1$. Such points are *inliers*.

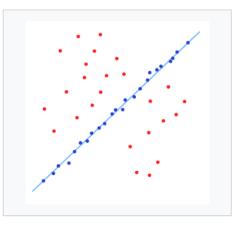
Remaining points do not support this line. They are outliers.

4. Score:

```
If ratio of inliers > \tau_2
stop
else
go to step 1
```







A data set with many outliers for which a line has to be fitted.

Fitted line with RANSAC; outliers have no influence on the result.

Figure: Source: https://en.wikipedia.org/wiki/Random_sample_consensus

Robust Estimation via RANSAC In General

- The RANSAC algorithm can be applied to any general estimation problem in the presence of outliers.
- Denoting model parameters by θ, error function by f(θ) and assuming that minimum points required to fit the model is K, RANSAC is as follows:
 - 1. Sample: Pick any K points randomly.
 - **2.** Solve: Fit the parameters θ for selected points.
 - 3. Score: If ratio of inliers $(f(\theta) < \tau_1)$ is above a threshold τ_2 , then stop. Otherwise, go to step 1.
- Can be used to robustly estimate parameters of
 - 1. Affine Transformation
 - 2. Homography
 - 3. Fundamental Matrix

Robust Homography Estimation via RANSAC

Figure: Projective warping by homography estimated from all SIFT matches (inliers and outliers). Author: N. Khan (2018)

Robust Homography Estimation via RANSAC



Figure: Projective warping by homography estimated from inliers only. Author: N. Khan (2018)