CS-565 Computer Vision

Nazar Khan

Department of Computer Science
University of the Punjab
13. Optic Flow - Local

Optic Flow

Optic Flow

Where does pixel (x, y) in frame z move to in frame $z+1$?

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

We want to find the displacement vector $(u, v)^{T}$ for every pixel.

- Input: image sequence $I(x, y, z)$, where (x, y) specifies the location and z denotes time/frame number
- Goal: displacement vector field of the image structures:
- optic flow $(u(x, y, z), v(x, y, z))$
- Such correspondence problems are key problems in computer vision.

Grey Value Constancy (GVC) Assumption

- Corresponding pixels should have the same grey value.
- That is, the optic flow between frame z and $z+1$ should satisfy

$$
I(x+u, y+v, z+1)=I(x, y, z)
$$

Taylor's Approximation for 2D Functions

- Recall that 1st-order Taylor's approximation for 1D functions is

$$
f(x+u) \approx f(x)+\frac{u}{1!} f^{\prime}(x)
$$

- For 2D functions, a 1st-order Taylor's approximation is

$$
f(x+u, y+v) \approx f(x, y)+\frac{u}{1!} f_{x}(x, y)+\frac{v}{1!} f_{y}(x, y)
$$

- For 3D functions, a 1st-order Taylor's approximation is

$$
f(x+u, y+v, z+w) \approx f(x, y, z)+\frac{u}{1!} f_{x}(x, y, z)+\frac{v}{1!} f_{y}(x, y, z)+\frac{w}{1!} f_{z}(x, y, z)
$$

- For our case,

$$
\begin{aligned}
& I(x+u, y+v, z+1) \approx \\
& I(x, y, z)+u I_{x}(x, y, z)+v I_{y}(x, y, z)+1 I_{z}(x, y, z)
\end{aligned}
$$

Optic Flow Constraint

- The grey value constancy (GVC) assumption

$$
I(x+u, y+v, z+1)=I(x, y, z)
$$

can then be approximated as

$$
\begin{aligned}
& I(x, y, z)+u I_{x}(x, y, z)+v I_{y}(x, y, z)+1 I_{z}(x, y, z) \approx I(x, y, z) \\
\Longrightarrow & I_{x}(x, y, z) u+I_{y}(x, y, z) v+I_{z}(x, y, z) \approx 0
\end{aligned}
$$

assuming (u, v) is a small displacement.

- The is known as the linearized optic flow constraint (OFC)

$$
I_{x} u+I_{y} v+I_{z}=0
$$

where location (x, y, z) is implied.

How good are the assumptions?

- We have made two assumptions

1. Gray value constancy
2. Small displacements (since we use first-order Taylor series approximation)

- Both assumptions are (almost) true in surprisingly many scenarios.

1. Gray values do not change much between consecutive ${ }^{1}$ frames.
2. Objects do not move too much between consecutive frames.

- For large displacements, image pyramid can be used.
${ }^{1}$ For a video recorded at 25 frames per second (fps), consecutive frames are only $\frac{1}{24}$ seconds apart.

Aperture Problem

Complete Flow
Normal Flow

When seen through an aperture, true movement cannot be determined. Only the component of movement normal to edge direction can be determined.

Normal Flow

- The OFC is one equation in two unknowns (infinite solutions).
- Can be written as

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]^{T} \nabla I+I_{z}=0
$$

- Adding any flow component orthogonal to image gradient does not affect the OFC.

$$
\begin{aligned}
\left(\left[\begin{array}{l}
u \\
v
\end{array}\right]+k \nabla I^{\perp}\right)^{T} \nabla I+I_{z} & =\left[\begin{array}{l}
u \\
v
\end{array}\right]^{T} \nabla I+k \underbrace{\nabla I^{\perp T} \nabla I}_{0}+I_{z} \\
& =\left[\begin{array}{l}
u \\
v
\end{array}\right]^{T} \nabla I+I_{z} \\
& =0
\end{aligned}
$$

Normal Flow

$$
\begin{aligned}
{\left[\begin{array}{c}
u_{n} \\
v_{n}
\end{array}\right] } & =\left(\left[\begin{array}{l}
u \\
v
\end{array}\right] \bullet \frac{\nabla I}{\|\nabla I\|}\right) \frac{\nabla I}{\|\nabla I\|} \\
& =\frac{-I_{z}}{\|\nabla I\|} \frac{\nabla I}{\|\nabla I\|} \quad\left(\because\left[\begin{array}{l}
u \\
v
\end{array}\right] \bullet \nabla I+I_{z}=0\right) \\
& =\frac{-1}{I_{x}^{2}+I_{y}^{2}}\left[\begin{array}{l}
I_{x} I_{z} \\
I_{y} I_{z}
\end{array}\right]
\end{aligned}
$$

- Only the component of flow in the direction of the gradient $\nabla /$ can be computed.
- Since gradient is normal to the edge direction, this flow vector is called the normal flow.
- To compute a better estimate of optic flow, we need to make some assumptions.

Local Optic Flow Method of Lucas \& Kanade

- Lucas \& Kanade ${ }^{2}$ make the following assumption:

Pixels around (i, j) all have the same displacement (u, v).

- For 3×3 neighbourhoods, this gives 9 OFCs all having the same 2 unknowns (u, v).
- The optimal unknown displacement minimizes the sum-squared-error

$$
E(u, v)=\frac{1}{2} \sum_{\mathcal{N}_{i j}}\left(I_{x} u+I_{y} v+I_{z}\right)^{2}
$$

${ }^{2}$ Bruce D. Lucas and Takeo Kanade. "An Iterative Image Registration Technique with an Application to Stereo Vision". In: Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume 2. IJCAI'81. Vancouver, BC, Canada: Morgan Kaufmann Publishers Inc., 1981, 674-679.

Local Optic Flow Method of Lucas \& Kanade

- Setting $\frac{\partial E}{\partial u}=0$ and $\frac{\partial E}{\partial v}=0$ yields a linear system

$$
\left[\begin{array}{cc}
\sum_{\mathcal{N}_{i j}} I_{x}^{2} & \sum_{\mathcal{N}_{i j}} I_{x} I_{y} \\
\sum_{\mathcal{N}_{i j}} I_{x} I_{y} & \sum_{\mathcal{N}_{i j}} I_{y}^{2}
\end{array}\right]\left[\begin{array}{c}
u^{*} \\
v^{*}
\end{array}\right]=\left[\begin{array}{l}
-\sum_{\mathcal{N}_{i j}} I_{x} I_{z} \\
-\sum_{\mathcal{N}_{i j}} I_{y} I_{z}
\end{array}\right]
$$

- Replacing the sums by Gaussian averaging yields

$$
\underbrace{\left[\begin{array}{cc}
G_{\rho} * I_{x}^{2} & G_{\rho} * I_{x} I_{y} \tag{1}\\
G_{\rho} * I_{x} I_{y} & G_{\rho} * I_{y}^{2}
\end{array}\right]}_{A}\left[\begin{array}{l}
u^{*} \\
v^{*}
\end{array}\right]=\left[\begin{array}{l}
-G_{\rho} * I_{x} I_{z} \\
-G_{\rho} * I_{y} I_{z}
\end{array}\right]
$$

- Notice the re-appearance of the structure tensor which now serves as the system matrix. Previously, we used it for corner detection.
- Flow vector can be found if $\operatorname{rank}(A)=2$.

Local Optic Flow Method of Lucas \& Kanade

- If $\operatorname{rank}(A)=0$, no gradients exist in the neighbourhood. So no optic flow can be computed.
- If $\operatorname{rank}(A)=1$, gradient vectors over all pixels in the neighbourhood are identical. Only normal flow can be computed.

$$
\left[\begin{array}{c}
u_{n} \\
v_{n}
\end{array}\right]=\frac{-1}{I_{x}^{2}+I_{y}^{2}}\left[\begin{array}{l}
I_{x} I_{z} \\
I_{y} I_{z}
\end{array}\right]
$$

- To save computations, avoid computing rank.

$$
\operatorname{trace}(A)=A_{11}+A_{22} \approx 0 \Longrightarrow \operatorname{rank}(A)=0
$$

$\operatorname{trace}(A) \not \approx 0$ and $\operatorname{det}(A)=A_{11} A_{22}-A_{12}^{2} \approx 0 \Longrightarrow \operatorname{rank}(A)=1$

Lucas \& Kanade

Algorithm

Input: Frames I_{1} and I_{2}.

Parameters:

1) Noise smoothing scale σ,
2) Gradient smoothing scale ρ,
3) Thresholds $\tau_{\text {trace }}$ and $\tau_{\text {det }}$.
1. Compute Gaussian derivatives at noise smoothing scale σ

$$
I_{x}=\frac{\partial G_{\sigma}}{\partial x} * I_{1} \quad \text { and } \quad I_{y}=\frac{\partial G_{\sigma}}{\partial y} * I_{1}
$$

2. Compute temporal derivative $I_{z}=I_{2}-I_{1}$.
3. Compute the products

$$
\begin{array}{lllll}
I_{x}^{2} & I_{y}^{2} & I_{x} I_{y} & I_{x} I_{z} & \text { and } I_{y} I_{z}
\end{array}
$$

4. Smooth the products at gradient smoothing scale ρ

$$
G_{\rho} * I_{x}^{2} \quad G_{\rho} * I_{y}^{2} \quad G_{\rho} * I_{x} I_{y} \quad G_{\rho} * I_{x} I_{z} \quad \text { and } \quad G_{\rho} * I_{y} I_{z}
$$

and construct the linear system in (1) at every pixel.

Lucas \& Kanade

Algorithm

5. For every pixel, solve the linear system conditioned on the rank.
if $A_{11}+A_{22}<\tau_{\text {trace }}$
$\operatorname{rank}(\mathrm{A})=0$ so no flow
else if $A_{11} A_{22}-A_{12}^{2}<\tau_{\text {det }}$
$\operatorname{rank}(A)=1$ so normal flow
else
$\operatorname{rank}(A)=2$ so complete optic flow

Visualising Displacement Vectors The HSV Color Space

Each color is represented by 3 values

1. Hue or shade as an angle from 0° to 360°.
2. Saturation or strength of the color
3. Value or brightness

Figure: The HSV color space.
http://reilley4color.blogspot.com/2016/05/munsell-hue-circle.html

Visualising Displacement Vectors

Figure: Vector angle represented by hue/shade of color and vector magnitude represented by the saturation/strength of color. HSV color space is useful for such a mapping. $H(x, y)=\theta(x, y), S(x, y)=\sqrt{u(x, y)^{2}+v(x, y)^{2}}$ and $V(x, y)=$ constant.

Lucas \& Kanade

Figure: Left to right: frame 1, frame 2, flow classification and false color visualization of optic flow vectors. For flow classification: white $=$ optic flow, gray $=$ normal flow and black $=$ no flow. Integration scale was $\rho=1$. Author: N. Khan (2015)

Lucas \& Kanade

Figure: Left to right: frame 1, frame 2, flow classification and false color visualization of optic flow vectors. For flow classification: white $=$ optic flow, gray $=$ normal flow and black $=$ no flow. Increasing the integration scale ρ to 4 fills up pixels with no flow using values from neighbouring pixels having normal or complete optic flow. Author: N. Khan (2015)

Lucas \& Kanade

Lucas \& Kanade

Lucas \& Kanade

Figure: Left to right: false color visualization of optic flow vectors, flow classification and flow magnitude. For flow classification: white $=$ optic flow, gray $=$ normal flow and black $=$ no flow. Noise smoothing scale was $\sigma=1$ and integration scale was $\rho=2$. Author: N. Khan (2018)

Lucas \& Kanade

Lucas \& Kanade

Figure: Left to right: false color visualization of optic flow vectors, flow classification and flow magnitude. For flow classification: white $=$ optic flow, gray $=$ normal flow and black $=$ no flow. Noise smoothing scale was $\sigma=1$ and integration scale was $\rho=8$. Author: N. Khan (2018)

Lucas \& Kanade

Advantages

- Simple and fast method.
- Requires only two frames (low memory requirements).
- Good value for money: results often superior to more complicated approaches.
Disadvantages
- Problems at locations where the local constancy assumption is violated: flow discontinuities and non-translatory motion (e.g. rotation).
- Local method that does not compute the flow field at all locations.

Next we study a global method that produces dense flow fields (i.e., at every pixel).

