CS-565 Computer Vision

Nazar Khan

Department of Computer Science
University of the Punjab
16. Camera Geometry

Imaging Devices

- Animal eyes and cameras share many geometric and photometric properties.

https://www.healthcare.nikon.com/en/ophthalmology-solution/valuing-eyes/

Camera Obscura

- Camera obscura (dark chamber) phenomena explored by ancient Chinese and Greeks.
- Extensively studied by Abu Ali al-Hassan ibn al-Haytham ${ }^{1}$ in the 11th century.

https://www.ibnalhaytham.com
${ }^{1}$ Father of Optics https://en.wikipedia.org/wiki/Ibn_al-Haytham
Nazar Khan

Pinhole Camera

- Pinhole used to focus light rays onto a wall or translucent plate in a dark box.

https://bonfoton.com/blogs/news/what-is-a-camera-obscura

Pinhole Camera

- Small pinhole produces sharp but dim pictures.
- Large pinhole produces brighter but blurry pictures.
- Pinholes gradually replaced by lenses to produce bright and sharp images.
- Backplane replaced by photosensitive material.
- Modern camera is essentially a camera obscura that records the amount of light striking each location of its image plane (retina).

Pinhole Camera

Real Image vs. Virtual Image

Image Plane
Pinhole
Figure: The real image is formed behind the pinhole on the image plane. The image is flipped horizontally and vertically. Author: N. Khan (2021)

Pinhole Camera

Real Image vs. Virtual Image

Figure: By imagining a virtual image plane in front of the pinhole, we can work with virtual images in the same orientation as the scene. The real and virtual image planes are otherwise geometrically equivalent. Author: N. Khan (2021)

Pinhole Camera

Real Image vs. Virtual Image

Figure: The pinhole can be modelled as the focal point/camera center C. Author: N. Khan (2021)

Pinhole Camera Model

Virtual Image Plane

Figure: Pinhole camera model with virtual image plane. Author: N. Khan (2021)

Camera Projection Equations

- Since $\mathbf{C}, \mathbf{m}=(x, y, f)$ and $\mathbf{M}_{\mathcal{C}}=(X, Y, Z)$ are collinear

$$
\begin{aligned}
& \overrightarrow{\mathrm{Cm}}=\lambda \overrightarrow{\mathrm{CM}} \overrightarrow{\mathcal{C}} \\
& \Longrightarrow\left\{\begin{array}{l}
x=\lambda X \\
y=\lambda Y \\
f=\lambda Z
\end{array} \quad \Longleftrightarrow \lambda=\frac{x}{X}=\frac{y}{Y}=\frac{f}{Z}\right.
\end{aligned}
$$

- Therefore, camera projection equations are

$$
\begin{aligned}
& x=f \frac{X}{Z} \\
& y=f \frac{Y}{Z}
\end{aligned}
$$

World Coordinates to Camera Coordinates

Figure: Any 3D location M has different representations in different coordinate systems. The camera center C itself is a 3D location represented in a world coordinate system. Author: N. Khan (2018)

World to Camera Coordinates

- Change of coordinates from world to camera frame in nonhomogenous coordinates can be obtained as

$$
\mathbf{M}_{\mathcal{C}}=R \mathbf{M}_{\mathcal{W}}+\mathbf{t}
$$

where the 3×3 matrix R represents a $3 D$ rotation and t is a $3 D$ translation vector.

- In homogenous coordinates, the same rigid transformation can be performed as

$$
\mathbf{M}_{\mathcal{C}}=T \mathbf{M}_{\mathcal{W}}
$$

where

$$
T=\left[\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

is a 4×4 matrix.

3D Rotations

- In 3D, any arbitrary rotation is represented by a 3×3 matrix

$$
\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- It can be decomposed into a sequence ${ }^{2}$ of rotations around the $X-, Y$ and Z-axes by angles θ_{x}, θ_{y} and θ_{z} respectively.

$$
\begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{x} & -\sin \theta_{x} \\
0 & \sin \theta_{x} & \cos \theta_{x}
\end{array}\right]}
\end{array} \quad\left[\begin{array}{ccc}
\cos \theta_{y} & 0 & \sin \theta_{y} \\
0 & 1 & 0 \\
-\sin \theta_{y} & 0 & \cos \theta_{y}
\end{array}\right] \quad\left[\right.
$$

- Therefore, a $3 D$ rotation is parameterized by 3 rotation angles only.

[^0]
Extrinsic Parameters

- The transformation T from world to camera coordinates has 6 parameters
- 3 for rotation: $\theta_{x}, \theta_{y}, \theta_{z}$
- 3 for translation: t_{x}, t_{y}, t_{z}
- They represent the extrinsic parameters of the camera.

Projection

- After transforming world coordinates $\mathbf{M}_{\mathcal{W}}$ to camera coordinates $\mathbf{M}_{\mathcal{C}}$, the image coordinates can be obtained via the projection equations

$$
\begin{aligned}
x & =\frac{f X_{\mathcal{C}}}{Z_{\mathcal{C}}} \\
y & =\frac{f Y_{\mathcal{C}}}{Z_{\mathcal{C}}}
\end{aligned}
$$

- In homogenous coordinates

$$
\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X_{\mathcal{C}} \\
Y_{\mathcal{C}} \\
Z_{\mathcal{C}} \\
W_{\mathcal{C}}
\end{array}\right]
$$

- Note that if units for $\mathrm{M}_{\mathcal{W}}$ were inches, then the projections x and y are still in inches.

Projection to pixels

- To convert to pixels, multiply by pixels-per-inch.
- In imaging sensors with rectangular pixels, pixels-per-inch will be different for x and y directions.
- Let p_{x} be the pixels-per-inch in x-direction and p_{y} be the pixels-per-inch in y-direction.
- Projection equations in pixels become

$$
\begin{aligned}
x & =p_{x} \frac{f X_{\mathcal{C}}}{Z_{\mathcal{C}}} \\
y & =p_{y} \frac{f Y_{\mathcal{C}}}{Z_{\mathcal{C}}}
\end{aligned}
$$

- Denoting $f_{x}=p_{x} f$ and $f_{y}=p_{y} f$

$$
\begin{aligned}
& x=f_{x} \frac{X_{\mathcal{C}}}{Z_{\mathcal{C}}} \\
& y=f_{y} \frac{Y_{\mathcal{C}}}{Z_{\mathcal{C}}}
\end{aligned}
$$

Changing the origin

- To change origin from principal point c to some corner of the image, add the coordinates $\left(u_{0}, v_{0}\right)$ of \mathbf{c} with respect to new origin.
- Projection equations in pixels with respect to new origin become

$$
\begin{aligned}
& x=p_{x} \frac{f X_{\mathcal{C}}}{Z_{\mathcal{C}}}+u_{0} \\
& y=p_{y} \frac{f Y_{\mathcal{C}}}{Z_{\mathcal{C}}}+v_{0}
\end{aligned}
$$

Skewed Pixels

- Sometimes, sensor pixels can be slightly skewed due to manufacturing error.
- This means that x and y directions are not orthogonal. Instead, they have an angle θ (close to 90°) between them.
- Projection equations become

$$
\begin{aligned}
& x=f_{x} \frac{X_{\mathcal{C}}}{Z_{\mathcal{C}}}-f_{x} \cot \theta \frac{Y_{\mathcal{C}}}{Z_{\mathcal{C}}}+u_{0} \\
& y=\frac{f_{y}}{\sin \theta} \frac{Y_{\mathcal{C}}}{Z_{\mathcal{C}}}+v_{0}
\end{aligned}
$$

- The 5 parameters $f_{x}, f_{y}, \theta, u_{0}, v_{0}$ are known as the intrinsic parameters of the camera.

Camera Matrix

- A 3D point in homogeneous world coordinates $\left(X_{w}, Y_{w}, Z_{w}, 1\right)^{T}$ is mapped to a 2D image point with homogeneous pixel coordinates $(u, v, w)^{T}$ as

$$
\begin{aligned}
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right) & =\underbrace{\left(\begin{array}{ccc}
f_{x} & -f_{x} \cot \theta & u_{0} \\
0 & f_{v} / \sin \theta & v_{0} \\
0 & 0 & 1
\end{array}\right)}_{\text {intrinsic }} \underbrace{\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)}_{\text {projection }} \underbrace{\left(\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3} \\
0 & 0 & 0 & 1
\end{array}\right)}_{\text {extrinsic }}\left(\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right) \\
& =\underbrace{\left(\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right)}_{\text {full projection matrix }}\left(\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right)
\end{aligned}
$$

- 12 parameters in total but with 1 free scaling parameter. So 11 degrees of freedom: 6 extrinsic plus 5 intrinsic.

Why does the road vanish at the horizon?

Why do parallel lines meet in images?

Figure: Projection of two points on two parallel lines in a plane. Author: N. Khan (2021)

Why do parallel lines meet in images?

Figure: Projection of two more points. Author: N. Khan (2021)

Why do parallel lines meet in images?

Figure: Projection of two parallel lines in a plane. Author: N. Khan (2021)

Summary

- We have seen how a point in world coordinates is converted into its corresponding pixel coordinates via a single matrix multiplication in homogenous coordinates.

$$
\mathbf{m}=P \mathrm{M}
$$

- The whole process can be decomposed into into a sequence of 3 matrix multiplications

1. Intrinsic
2. Projection
3. Extrinsic

- We have seen how parallel lines in a plane intersect under perspective projection.
- Next lecture: anatomy of the camera matrix P.

[^0]: ${ }^{2}$ Remember that order matters!

