# CS-565 Computer Vision 

Nazar Khan

Department of Computer Science
University of the Punjab
18. Camera Calibration

## Camera Matrix

- A 3D point in homogeneous world coordinates $\left(X_{w}, Y_{w}, Z_{w}, 1\right)^{T}$ is mapped to a 2D image point with homogeneous pixel coordinates $(u, v, w)^{T}$ as

$$
\begin{aligned}
{\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right] } & =\underbrace{\left[\begin{array}{ccc}
f_{x} & -f_{x} \cot \theta & u_{0} \\
0 & f_{v} / \sin \theta & v_{0} \\
0 & 0 & 1
\end{array}\right]}_{\text {intrinsic }} \underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\text {projection }} \underbrace{\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3} \\
0 & 0 & 0 & 1
\end{array}\right]}_{\text {extrinsic }}\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]}_{\text {full projection matrix }}\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
\end{aligned}
$$

- 12 parameters in total but with 1 free scaling parameter. So 11 degrees of freedom: 6 extrinsic plus 5 intrinsic.


## Camera Matrix

- The projection equation

$$
\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
f_{x} & -f_{x} \cot \theta & u_{0} \\
0 & f_{v} / \sin \theta & v_{0} \\
0 & 0 & 1
\end{array}\right]}_{K} \underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\text {projection }} \underbrace{\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3} \\
0 & 0 & 0 & 1
\end{array}\right]}_{\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right]}\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

can be simply written as

$$
\begin{aligned}
\tilde{\mathbf{m}} & =K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \tilde{\mathbf{M}} \\
& =K(R \mathbf{M}+\mathbf{t})
\end{aligned}
$$

- In other words

$$
P=K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right]
$$

## Factorization of the Camera Matrix

- Since the camera center C is the null-vector of $P$,

$$
\begin{aligned}
& P \tilde{\mathrm{C}}=0 \\
& \Longrightarrow K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \mathrm{C}=\mathbf{0} \\
& \Longrightarrow K R \mathrm{C}+K \mathrm{t}=\mathbf{0} \\
& \Longrightarrow \mathrm{C}=-R^{\top} \mathbf{t}
\end{aligned}
$$

$R^{-1}=R^{T}$ since rotation matrices are orthogonal.

## Camera Calibration Using 2D Checkerboard

- Camera calibration is the process of finding the 12 values of $P$.
- We can use a checkerboard of known size and structure.
- Fix one corner as origin of world coordinate system.
- Then all points on the checkerboard lie in the $X Y$-plane $(Z=0)$.
- Z-axis is orthogonal to the checkerboard.



## Checkboard-to-Image Plane Homography

- For any point $\tilde{\mathrm{M}}$ on the checkerboard, its image $\tilde{\mathbf{m}}$ is obtained as

$$
\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{ll}
K & 0_{3 \times 1}
\end{array}\right]\left[\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z=0 \\
1
\end{array}\right]=\underbrace{K\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right]}_{\text {Homography } H}\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right]
$$

- That is $\tilde{\mathbf{m}}_{i}=H \tilde{\mathrm{M}}_{i}$.
- Homography for checkerboard image $j$ can be computed via DLT using at least 4 correspondences $\tilde{\mathbf{m}}_{i} \longleftrightarrow \tilde{\mathrm{M}}_{i}$.


## Checkboard-to-Image Plane Homography

- The $\mathbf{m}_{i}$ can be found using corner detection.

- The corresponding $\mathbf{M}_{i}$ can be computed since the size and structure of the checkerboard are known (squares of measured dimensions).


## Checkboard-to-Image Plane Homography

- For the estimated homography $H=\left[\begin{array}{lll}\mathbf{h}_{1} & \mathbf{h}_{2} & \mathbf{h}_{3}\end{array}\right]$, we can write

$$
\left[\begin{array}{lll}
\mathbf{h}_{1} & \mathbf{h}_{2} & \mathbf{h}_{3}
\end{array}\right]=K\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right]
$$

- So $\mathbf{r}_{i} \equiv K^{-1} \mathbf{h}_{i}$.
- Since $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$ are columns of a rotation matrix

$$
\begin{aligned}
& \mathbf{r}_{1}^{T} \mathbf{r}_{2}=0 \Longrightarrow \mathbf{h}_{1}^{T} K^{-T} K^{-1} \mathbf{h}_{2}=0 \\
& \mathbf{r}_{1}^{T} \mathbf{r}_{1}=1 \Longrightarrow \mathbf{h}_{1}^{T} K^{-T} K^{-1} \mathbf{h}_{1}=1 \\
& \mathbf{r}_{2}^{T} \mathbf{r}_{2}=1 \Longrightarrow \mathbf{h}_{2}^{T} K^{-T} K^{-1} \mathbf{h}_{2}=1
\end{aligned}
$$

- The term $K^{-T} K^{-1}$ is a symmetric and positive definite matrix that we denote by $B$.

$$
B=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{12} & b_{22} & b_{23} \\
b_{13} & b_{23} & b_{33}
\end{array}\right]
$$

## Intrinsic Matrix

- So for each homography (i.e., checkerboard image), we have two constraints

$$
\begin{aligned}
& \mathbf{h}_{1}^{T} B \mathbf{h}_{2}=0 \\
& \mathbf{h}_{1}^{T} B \mathbf{h}_{1}-\mathbf{h}_{2}^{T} B \mathbf{h}_{2}=0
\end{aligned}
$$

- For all images, these constraints can be written as a linear system $V \mathbf{b}=0$ from which $\mathbf{b}=\left[\begin{array}{llllll}b_{11} & b_{12} & b_{22} & b_{13} & b_{23} & b_{33}\end{array}\right]^{T}$ can be found via SVD.
- Matrix $K$ can be recovered through the Cholsky decomposition of $B$.

$$
\operatorname{chol}(B)=L L^{T}
$$

where $L$ is a lower-triangular matrix.

- This means that $K=L^{-T}$.


## Cholsky Decomposition

- Cholsky decomposition of a $3 \times 3$ matrix $B$ can be computed iteratively as

$$
L=\left[\begin{array}{ccc}
\sqrt{B_{11}} & 0 & 0 \\
B_{21} / L_{11} & \sqrt{B_{22}-L_{21}^{2}} & 0 \\
B_{31} / L_{11} & \left(B_{32}-L_{31} L_{21}\right) / L_{22} & \sqrt{B_{33}-L_{31}^{2}-L_{32}^{2}}
\end{array}\right]
$$

- In terms of formulae for each term

$$
\begin{aligned}
L_{j, j} & =( \pm) \sqrt{B_{j, j}-\sum_{k=1}^{j-1} L_{j, k}^{2}}, \\
L_{i, j} & =\frac{1}{L_{j, j}}\left(B_{i, j}-\sum_{k=1}^{j-1} L_{i, k} L_{j, k}\right) \quad \text { for } i>j .
\end{aligned}
$$

## Extrinsic Matrix

- Once $K$ is found, the extrinsic parameters for a given image of the calibration grid can be found easily.

$$
\begin{aligned}
\mathbf{r}_{1} & \equiv K^{-1} \mathbf{h}_{1} \\
\mathbf{r}_{2} & \equiv K^{-1} \mathbf{h}_{2} \\
\mathbf{t} & \equiv K^{-1} \mathbf{h}_{3}
\end{aligned}
$$

and after normalising $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$, we can find the third column of $R$ as $\mathbf{r}_{3} \equiv \mathbf{r}_{1} \times \mathbf{r}_{2}$.

- Notice that $K$ is computed from $B$ which is computed using the constraint $\mathbf{h}_{1}^{T} B \mathbf{h}_{1}=\mathbf{h}_{2}^{T} B \mathbf{h}_{2}$.
- This means that $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$ will have the same magnitude $m$ which represents the homogeneous scale of matrix $K$.


## Extrinsic Matrix

- So the actual rotation and translation vectors are

$$
\begin{aligned}
\mathbf{r}_{1} & \leftarrow \frac{1}{m} \mathbf{r}_{1} \\
\mathbf{r}_{2} & \leftarrow \frac{1}{m} \mathbf{r}_{2} \\
\mathbf{r}_{3} & \leftarrow \mathbf{r}_{1} \times \mathbf{r}_{2} \\
\mathbf{t} & \leftarrow \frac{1}{m} \mathbf{t}
\end{aligned}
$$

## Augmented Reality

- A calibrated camera provides an interface between the $2 D$ and $3 D$ worlds.
- We can exploit it to augment 2D images with a false 3D reality.
- This is known as augmented reality.


Figure: A 3D cube augmented onto the plane of the calibration checkerboard in two different orientations. Author: N. Khan (2018)

## Summary

- We have seen how to calibrate a camera when represented as a $3 \times 4$ linear transformation.
- Multiple images of a checkerboard of known structure can be used to find $2 D-3 D$ correspondences.
- Linear algebra modules can be used to recover camera parameters.
- SVD
- Cholsky decomposition
- Cross-product


## Summary

- Due to the presence of a lens, a real camera transformation has additional non-linear transformations.
- Radial distortion

- Non-linear camera calibration incorporates such non-linear effects as well.

