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Stereo Reconstruction

I So far, we have only investigated the projective geometry of the
monocular case (single pinhole camera).

I In this lecture, we study the binocular case (two pinhole cameras).
I Disparity between the two views allows reconstruction of the 3D scene.
I Known as stereo reconstruction.
I To do this, we will study stereo geometry (also called epipolar geometry).
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Cross Product

u× v =

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 =

 0 −u3 u2
u3 0 −u1
−u2 u1 0


︸ ︷︷ ︸

[u]×

v1
v2
v3



I Only defined for 3-dimensional spaces such as R3 and P2.
I Matrix [u]× has two linearly independent rows.

I Proof: u1 row1+ u2 row2+ u3 row3 = 0T =⇒ any row can be written as
a linear combination of the other two rows.

I u× v is another 3-dimensional vector orthogonal to both u and v.
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Cross Product

I ‖u× v‖ represents the area of the parallelogram formed by u and v.

I If u and v point in the same direction, then no parallelogram will be
formed.

I Therefore ‖u× v‖ will be 0.
I The only vector with norm 0 is the 0 vector.
I Therefore, u× v = 0 when u and v point in the same direction.
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Lines and Points in Homogeneous Coordinates

I For a point x = (x , y)T in Euclidean coordinates, the point x̃ = (x , y , 1)T

is its counterpart in homogeneous coordinates.
I Let m1 = (x1, y1)

T and m2 = (x2, y2)
T be two different points (i.e.

m1 6= m2) in Euclidean coordinates.
I A 2D line can be represented as `1 = (a1, b1, c1)

T . It consists of all
points (x , y) that satisfy a1x + b1y + c1 = 0.

I In homogenous coordinates

m̃1 =

x1
y1
1

 m̃2 =

x2
y2
1

 `1 =

a1
b1
c1
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Lines and Points in Homogeneous Coordinates

1. If m1 lies on line `1 then m̃T
1 `1 = 0.

m1 lies on line `1 =⇒ a1x1 + b1y1 + c1 = 0

=⇒
[
x1 y1 1

] a1
b1
c1

 = 0

=⇒ m̃T
1 `1 = 0

2. If m1 is the intersection of `1 and `2 then `1 × `2 ≡ m̃1.
Proof:
Since m1 lies on both `1 and `2, m̃T

1 `1 = 0 and m̃T
1 `2 = 0.

So vector m̃1 is orthogonal to both vector `1 and vector `2.
We know that the vector that is orthogonal to both `1 and `2 is their
cross-product `1 × `2. Hence, m̃1 ≡ `1 × `2.
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Lines and Points in Homogeneous Coordinates

3. If line `1 connects points m1 and m2 then m̃1 × m̃2 ≡ `1.
Proof:
Since `1 contains both m1 and m2, m̃T

1 `1 = 0 and m̃T
2 `1 = 0. So vector

`1 is orthogonal to both vector m̃1 and vector m̃2.
We know that the vector that is orthogonal to both m̃1 and m̃2 is their
cross-product m̃1 × m̃2. Hence, `1 ≡ m̃1 × m̃2.

I Exercises:
1. Find the point of intersection of lines y = x + 1 and y = −2x + 3.
2. Find the line passing through the points (0, 1) and (2, 3).

x

y

x

y
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Single View

Figure: In a calibrated camera, any pixel m can be back-projected to form a ray
K−1m̃ in the camera coordinate system. Author: N. Khan (2021)
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Two Views
Triangulation

Figure: Back-projected rays from two cameras intersect at the 3D location of the
world point M. Given corresponding points m and m′, recovering M in this manner is
known as triangulation. Author: N. Khan (2021)
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Epipoles

Figure: The image of one camera center in the other camera is called the epipole.
Given calibrated cameras P and P ′, epipoles of the stereo setup can be computed as,
e ≡ PC̃′ and e′ ≡ P ′C̃. Author: N. Khan (2021)
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Epipolar Line

Figure: Given m, world point M can potentially lie anywhere along the
back-projected ray. Therefore, in the second view, corresponding point m′ can lie
anywhere along the image of the back-projected ray. Author: N. Khan (2021)
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Epipolar Line

Figure: Image of the back-projected ray is called the epipolar line l′. Since it must
pass through m′ and the epipole e′, it can be computed as l′ ≡ m′ × e′. Author: N.
Khan (2021)
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Epipolar Geometry

Figure: Line l′ is the epipolar line in the second camera corresponding to pixel m in
the first camera. Similarly, l ≡ m× e is the epipolar line in the first camera
corresponding to pixel m′ in the second camera. Each pixel in one view has a
corresponding epipolar line in the other view. Author: N. Khan (2021)
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Epipolar Plane

Epipolar plane

Baseline

Figure: The world point M (alternatively, pixel m) and the two camera centers C
and C′ define a plane in 3D called the epipolar plane. Notice that corresponding
points m,m′, epipoles e, e′, and epipolar lines l, l′ also lie on the epipolar plane.
Author: N. Khan (2021)
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Epipolar Plane

Epipolar plane

Baseline

Figure: Any two points of a planar surface are related by an invertible 3× 3 matrix,
i.e., homography. We will denote the homography that maps m to m′ by Hπ.
Therefore, m′ ≡ Hπm. Author: N. Khan (2021)
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Fundamental Matrix

I Gathering everything together
l′ ≡ e′ ×m′

≡ e′ × Hπm
≡ [e′]×Hπm
≡ Fm

Epipolar plane

Baseline

I The 3× 3 matrix F is called the fundamental matrix.
I It maps any pixel in the first camera to its corresponding epipolar line in

the second camera.
I Note that rank(F ) = 2.

rank(F ) = min
(
rank([e′]×), rank(Hπ)

)
= min(2, 3) = 2

I F has 7 degrees of freedom (9 parameters −1 for scale −1 for rank)

Nazar Khan Computer Vision 16 / 24



P2 Geometry Epipolar Geometry Fundamental Matrix Epipolar Constraint Stereo Setups Stereo Correspondence Triangulation

Epipolar Constraint

I Since m′ lies on the epipolar line l′

m
′T l′ = 0

=⇒ m
′TFm = 0

Epipolar plane

Baseline

I This is known as the epipolar constraint.
I Corresponding points m and m′ must satisfy the epipolar constraint.
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Fundamental Matrix Estimation

I When cameras are not calibrated, F can be estimated via N ≥ 8
correspondences mi ,m′i .

I Epipolar constraint can be written as

0 = m
′TFm =

[
x ′ y ′ 1

] f11 f12 f13
f21 f22 f23
f31 f32 f33

xy
1


=

xx ′f11 + yx ′f12 + x ′f13
+xy ′f21 + yy ′f22 + y ′f23
+xf31 + yf32 + f33

= sT f

where

s =
[
xx ′ yx ′ x ′ xy ′ yy ′ y ′ x y 1

]T
f =

[
f11 f12 f13 f21 f22 f23 f31 f32 f33

]T
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Fundamental Matrix Estimation

I Vector f can be estimated by minimizing the sum-squared-error

E (f) =
N∑
i=1

(
sTi f
)2

=
N∑
i=1

(
sTi f
)T (

sTi f
)
= fT

(
N∑
i=1

sisTi

)
︸ ︷︷ ︸

A

f

subject to ‖f‖ = 1 to avoid the trivial solution f = 0.
I Constrained optimization problem

f∗ = argmin
f

fTAf s.t. ‖f‖ = 1

I f∗ is the eigenvector of A corresponding to the smallest eigenvalue.
I f∗ can be reshaped to yield the fundamental matrix F .
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Enforcing Rank-2 Constraint

I Recall that rank(F ) must be 2.
I If necessary, this can be enforced via SVD.
I SVD allows F to be decomposed as a product of three rank-3 matrices

F = UDV T

where

D =

σ1 0 0
0 σ2 0
0 0 σ3


with σi =

√
λi (FTF ).

I Replacing σ3 by 0 and multiplying the three matrices together yields the
closest rank-2 approximation of F .
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Stereo Setups
Parallel Camera Stereo Rig
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Stereo Setups
Forward Translating Camera
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Stereo Correspondence
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Triangulation
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