CS-565 Computer Vision

Nazar Khan

Department of Computer Science University of the Punjab

19. Stereo Reconstruction

Stereo Reconstruction

- So far, we have only investigated the projective geometry of the monocular case (single pinhole camera).
- ▶ In this lecture, we study the binocular case (two pinhole cameras).
- ▶ Disparity between the two views allows reconstruction of the 3*D* scene.
- Known as *stereo reconstruction*.
- ▶ To do this, we will study stereo geometry (also called epipolar geometry).

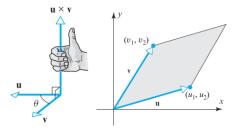
Cross Product

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix}}_{[\mathbf{u}]_{\times}} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

- Only defined for 3-dimensional spaces such as \mathbb{R}^3 and \mathbb{P}^2 .
- Matrix $[\mathbf{u}]_{\times}$ has two linearly independent rows.
 - ▶ *Proof*: $u_1 \text{ row1} + u_2 \text{ row2} + u_3 \text{ row3} = \mathbf{0}^T \implies$ any row can be written as a linear combination of the other two rows.
- $\mathbf{u} \times \mathbf{v}$ is another 3-dimensional vector orthogonal to both \mathbf{u} and \mathbf{v} .

Cross Product

 $\blacktriangleright ~ \| u \times v \|$ represents the area of the parallelogram formed by u and v.



- If u and v point in the same direction, then no parallelogram will be formed.
- Therefore $\|\mathbf{u} \times \mathbf{v}\|$ will be 0.
- ► The only vector with norm 0 is the **0** vector.
- Therefore, $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ when \mathbf{u} and \mathbf{v} point in the same direction.

Lines and Points in Homogeneous Coordinates

- For a point x = (x, y)^T in Euclidean coordinates, the point x̃ = (x, y, 1)^T is its counterpart in homogeneous coordinates.
- Let m₁ = (x₁, y₁)^T and m₂ = (x₂, y₂)^T be two different points (i.e. m₁ ≠ m₂) in Euclidean coordinates.
- A 2D line can be represented as ℓ₁ = (a₁, b₁, c₁)^T. It consists of all points (x, y) that satisfy a₁x + b₁y + c₁ = 0.
- In homogenous coordinates

$$\tilde{\mathbf{m}}_1 = \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} \quad \tilde{\mathbf{m}}_2 = \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} \quad \ell_1 = \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix}$$

Lines and Points in Homogeneous Coordinates

1. If \mathbf{m}_1 lies on line ℓ_1 then $\tilde{\mathbf{m}}_1^T \ell_1 = 0$.

m

1 lies on line
$$\ell_1 \implies a_1 x_1 + b_1 y_1 + c_1 = 0$$

$$\implies \begin{bmatrix} x_1 & y_1 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix} = 0$$

$$\implies \tilde{\mathbf{m}}_1^T \ell_1 = 0$$

2. If m_1 is the intersection of ℓ_1 and ℓ_2 then $\ell_1 \times \ell_2 \equiv \tilde{m}_1$. <u>Proof:</u>

Since \mathbf{m}_1 lies on both ℓ_1 and ℓ_2 , $\tilde{\mathbf{m}}_1^T \ell_1 = 0$ and $\tilde{\mathbf{m}}_1^T \ell_2 = 0$. So vector $\tilde{\mathbf{m}}_1$ is orthogonal to both vector ℓ_1 and vector ℓ_2 . We know that the vector that is orthogonal to both ℓ_1 and ℓ_2 is their cross-product $\ell_1 \times \ell_2$. Hence, $\tilde{\mathbf{m}}_1 \equiv \ell_1 \times \ell_2$. P² Geometry Epipolar Geometry Fundamental Matrix Epipolar Constraint Stereo Setups Stereo Correspondence Triangulation

Lines and Points in Homogeneous Coordinates

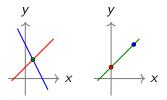
3. If line ℓ_1 connects points m_1 and m_2 then $\tilde{m}_1 \times \tilde{m}_2 \equiv \ell_1$. <u>Proof:</u>

Since ℓ_1 contains both \mathbf{m}_1 and \mathbf{m}_2 , $\tilde{\mathbf{m}}_1^T \ell_1 = 0$ and $\tilde{\mathbf{m}}_2^T \ell_1 = 0$. So vector ℓ_1 is orthogonal to both vector $\tilde{\mathbf{m}}_1$ and vector $\tilde{\mathbf{m}}_2$.

We know that the vector that is orthogonal to both \tilde{m}_1 and \tilde{m}_2 is their cross-product $\tilde{m}_1 \times \tilde{m}_2$. Hence, $\ell_1 \equiv \tilde{m}_1 \times \tilde{m}_2$.

Exercises:

- 1. Find the point of intersection of lines y = x + 1 and y = -2x + 3.
- **2.** Find the line passing through the points (0,1) and (2,3).



Single View

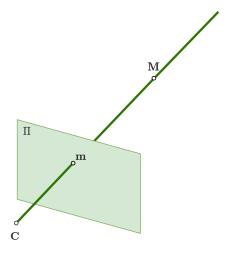


Figure: In a calibrated camera, any pixel **m** can be back-projected to form a ray $K^{-1}\tilde{\mathbf{m}}$ in the camera coordinate system. Author: N. Khan (2021)

Two Views Triangulation

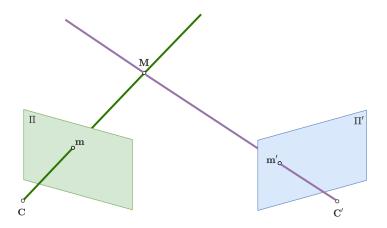


Figure: Back-projected rays from two cameras intersect at the 3*D* location of the world point **M**. Given corresponding points **m** and **m**', recovering **M** in this manner is known as *triangulation*. Author: N. Khan (2021)

Epipoles

Figure: The image of one camera center in the other camera is called the *epipole*. Given calibrated cameras P and P', epipoles of the stereo setup can be computed as, $\mathbf{e} \equiv P\tilde{\mathbf{C}}'$ and $\mathbf{e}' \equiv P'\tilde{\mathbf{C}}$. Author: N. Khan (2021)

Epipolar Line

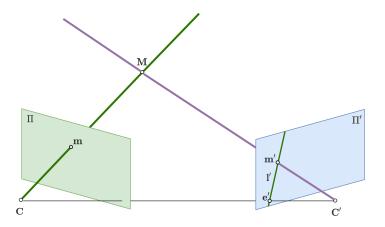


Figure: Given **m**, world point **M** can potentially lie anywhere along the back-projected ray. Therefore, in the second view, corresponding point \mathbf{m}' can lie anywhere along the image of the back-projected ray. Author: N. Khan (2021)

Epipolar Line

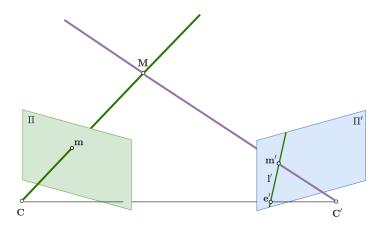


Figure: Image of the back-projected ray is called the *epipolar line* I'. Since it must pass through \mathbf{m}' and the epipole \mathbf{e}' , it can be computed as $\mathbf{l}' \equiv \mathbf{m}' \times \mathbf{e}'$. Author: N. Khan (2021)

Epipolar Geometry

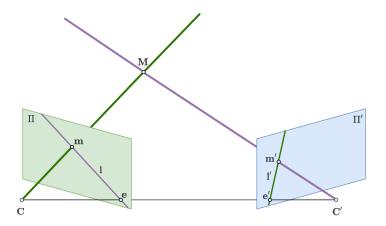


Figure: Line **I**' is the epipolar line in the second camera corresponding to pixel **m** in the first camera. Similarly, $\mathbf{I} \equiv \mathbf{m} \times \mathbf{e}$ is the epipolar line in the first camera corresponding to pixel **m**' in the second camera. *Each pixel in one view has a corresponding epipolar line in the other view.* Author: N. Khan (2021)

Epipolar Plane

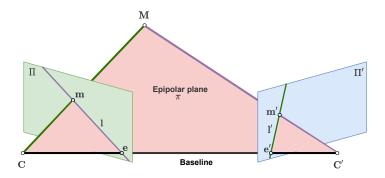


Figure: The world point **M** (alternatively, pixel **m**) and the two camera centers **C** and **C**' define a plane in 3*D* called the *epipolar plane*. Notice that corresponding points \mathbf{m}, \mathbf{m}' , epipoles \mathbf{e}, \mathbf{e}' , and epipolar lines \mathbf{l}, \mathbf{l}' also lie on the epipolar plane. Author: N. Khan (2021)

Epipolar Plane

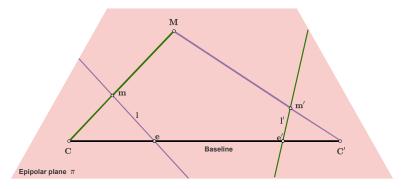
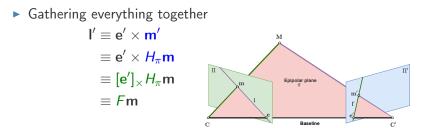


Figure: Any two points of a planar surface are related by an invertible 3×3 matrix, i.e., homography. We will denote the homography that maps **m** to **m**' by H_{π} . Therefore, $\mathbf{m}' \equiv H_{\pi}\mathbf{m}$. Author: N. Khan (2021)

Fundamental Matrix



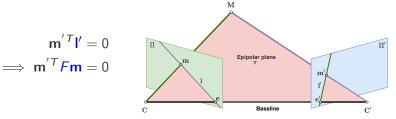
- The 3×3 matrix *F* is called the *fundamental matrix*.
- It maps any pixel in the first camera to its corresponding epipolar line in the second camera.
- Note that rank(F) = 2.

$$\operatorname{rank}(F) = \min(\operatorname{rank}([\mathbf{e}']_{\times}), \operatorname{rank}(H_{\pi})) = \min(2,3) = 2$$

F has 7 degrees of freedom (9 parameters -1 for scale -1 for rank)

Epipolar Constraint

 \blacktriangleright Since m' lies on the epipolar line l'



- This is known as the *epipolar constraint*.
- ► Corresponding points **m** and **m**' must satisfy the epipolar constraint.

Fundamental Matrix Estimation

- When cameras are not calibrated, F can be estimated via $N \ge 8$ correspondences $\mathbf{m}_i, \mathbf{m}'_i$.
- Epipolar constraint can be written as

$$0 = \mathbf{m}^{'T} F \mathbf{m} = \begin{bmatrix} x' & y' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$xx' f_{11} + yx' f_{12} + x' f_{13}$$
$$= +xy' f_{21} + yy' f_{22} + y' f_{23}$$
$$+x f_{31} + y f_{32} + f_{33}$$
$$= \mathbf{s}^{T} \mathbf{f}$$

where

$$\mathbf{s} = \begin{bmatrix} xx' & yx' & x' & xy' & yy' & y' & x & y & 1 \end{bmatrix}^{T}$$
$$\mathbf{f} = \begin{bmatrix} f_{11} & f_{12} & f_{13} & f_{21} & f_{22} & f_{23} & f_{31} & f_{32} & f_{33} \end{bmatrix}^{T}$$

Fundamental Matrix Estimation

 \blacktriangleright Vector f can be estimated by minimizing the sum-squared-error

$$E(\mathbf{f}) = \sum_{i=1}^{N} \left(\mathbf{s}_{i}^{T} \mathbf{f} \right)^{2} = \sum_{i=1}^{N} \left(\mathbf{s}_{i}^{T} \mathbf{f} \right)^{T} \left(\mathbf{s}_{i}^{T} \mathbf{f} \right) = \mathbf{f}^{T} \underbrace{\left(\sum_{i=1}^{N} \mathbf{s}_{i} \mathbf{s}_{i}^{T} \right)}_{A} \mathbf{f}$$

subject to $\|f\| = 1$ to avoid the trivial solution f = 0.

Constrained optimization problem

$$\mathbf{f}^* = \arg\min_{\mathbf{f}} \mathbf{f}^T A \mathbf{f}$$
 s.t. $\|\mathbf{f}\| = 1$

- f^* is the eigenvector of A corresponding to the *smallest* eigenvalue.
- f^* can be reshaped to yield the fundamental matrix F.

Enforcing Rank-2 Constraint

- Recall that rank(F) must be 2.
- If necessary, this can be enforced via SVD.
- SVD allows F to be decomposed as a product of three rank-3 matrices

$$F = UDV^T$$

where

$$D = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}$$

with $\sigma_i = \sqrt{\lambda_i (F^T F)}$.

• Replacing σ_3 by 0 and multiplying the three matrices together yields the closest rank-2 approximation of F.

Stereo Setups Parallel Camera Stereo Rig

Stereo Correspondence

Triangulation