CS-565 Computer Vision

Nazar Khan

Department of Computer Science
University of the Punjab
19. Stereo Reconstruction

Stereo Reconstruction

- So far, we have only investigated the projective geometry of the monocular case (single pinhole camera).
- In this lecture, we study the binocular case (two pinhole cameras).
- Disparity between the two views allows reconstruction of the $3 D$ scene.
- Known as stereo reconstruction.
- To do this, we will study stereo geometry (also called epipolar geometry).

Cross Product

$$
\mathbf{u} \times \mathbf{v}=\left[\begin{array}{l}
u_{2} v_{3}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
0 & -u_{3} & u_{2} \\
u_{3} & 0 & -u_{1} \\
-u_{2} & u_{1} & 0
\end{array}\right]}_{[\mathbf{u}] \times}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

- Only defined for 3 -dimensional spaces such as \mathbb{R}^{3} and \mathbb{P}^{2}.
- Matrix $[\mathbf{u}]_{\times}$has two linearly independent rows.
- Proof: u_{1} row $1+u_{2}$ row $2+u_{3}$ row $3=\mathbf{0}^{T} \Longrightarrow$ any row can be written as a linear combination of the other two rows.
- $\mathbf{u} \times \mathbf{v}$ is another 3-dimensional vector orthogonal to both \mathbf{u} and \mathbf{v}.

Cross Product

- $\|\mathbf{u} \times \mathbf{v}\|$ represents the area of the parallelogram formed by \mathbf{u} and \mathbf{v}.

- If \mathbf{u} and \mathbf{v} point in the same direction, then no parallelogram will be formed.
- Therefore $\|\mathbf{u} \times \mathbf{v}\|$ will be 0 .
- The only vector with norm 0 is the $\mathbf{0}$ vector.
- Therefore, $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ when \mathbf{u} and \mathbf{v} point in the same direction.

Lines and Points in Homogeneous Coordinates

- For a point $\mathbf{x}=(x, y)^{T}$ in Euclidean coordinates, the point $\tilde{\mathbf{x}}=(x, y, 1)^{T}$ is its counterpart in homogeneous coordinates.
- Let $\boldsymbol{m}_{1}=\left(x_{1}, y_{1}\right)^{T}$ and $\mathbf{m}_{2}=\left(x_{2}, y_{2}\right)^{T}$ be two different points (i.e. $\mathbf{m}_{1} \neq \mathbf{m}_{2}$) in Euclidean coordinates.
- A $2 D$ line can be represented as $\ell_{1}=\left(a_{1}, b_{1}, c_{1}\right)^{T}$. It consists of all points (x, y) that satisfy $a_{1} x+b_{1} y+c_{1}=0$.
- In homogenous coordinates

$$
\tilde{\mathbf{m}}_{1}=\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \quad \tilde{\mathbf{m}}_{2}=\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right] \quad \ell_{1}=\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right]
$$

Lines and Points in Homogeneous Coordinates

1. If \mathbf{m}_{1} lies on line ℓ_{1} then $\tilde{\mathbf{m}}_{1}^{T} \ell_{1}=0$.
\mathbf{m}_{1} lies on line $\ell_{1} \Longrightarrow a_{1} x_{1}+b_{1} y_{1}+c_{1}=0$

$$
\begin{aligned}
& \Longrightarrow\left[\begin{array}{lll}
x_{1} & y_{1} & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right]=0 \\
& \Longrightarrow \tilde{\mathbf{m}}_{1}^{T} \ell_{1}=0
\end{aligned}
$$

2. If \mathbf{m}_{1} is the intersection of ℓ_{1} and ℓ_{2} then $\ell_{1} \times \ell_{2} \equiv \tilde{\mathbf{m}}_{1}$.

Proof:
Since \mathbf{m}_{1} lies on both ℓ_{1} and $\ell_{2}, \tilde{\mathbf{m}}_{1}^{T} \ell_{1}=0$ and $\tilde{\mathbf{m}}_{1}^{T} \ell_{2}=0$.
So vector $\tilde{\mathbf{m}}_{1}$ is orthogonal to both vector ℓ_{1} and vector ℓ_{2}.
We know that the vector that is orthogonal to both ℓ_{1} and ℓ_{2} is their cross-product $\ell_{1} \times \ell_{2}$. Hence, $\tilde{\mathbf{m}}_{1} \equiv \ell_{1} \times \ell_{2}$.

Lines and Points in Homogeneous Coordinates

3. If line ℓ_{1} connects points \boldsymbol{m}_{1} and \mathbf{m}_{2} then $\tilde{\mathbf{m}}_{1} \times \tilde{\mathbf{m}}_{2} \equiv \ell_{1}$.

Proof:

Since ℓ_{1} contains both \mathbf{m}_{1} and $\mathbf{m}_{2}, \tilde{\mathbf{m}}_{1}^{T} \ell_{1}=0$ and $\tilde{\mathbf{m}}_{2}^{T} \ell_{1}=0$. So vector ℓ_{1} is orthogonal to both vector $\tilde{\mathbf{m}}_{1}$ and vector $\tilde{\mathbf{m}}_{2}$.
We know that the vector that is orthogonal to both $\tilde{\mathbf{m}}_{1}$ and $\tilde{\mathbf{m}}_{2}$ is their cross-product $\tilde{\mathbf{m}}_{1} \times \tilde{\mathbf{m}}_{2}$. Hence, $\ell_{1} \equiv \tilde{\mathbf{m}}_{1} \times \tilde{\mathbf{m}}_{2}$.

- Exercises:

1. Find the point of intersection of lines $y=x+1$ and $y=-2 x+3$.
2. Find the line passing through the points $(0,1)$ and $(2,3)$.

Single View

Figure: In a calibrated camera, any pixel \mathbf{m} can be back-projected to form a ray $K^{-1} \tilde{\mathbf{m}}$ in the camera coordinate system. Author: N. Khan (2021)

Two Views

Triangulation

Figure: Back-projected rays from two cameras intersect at the $3 D$ location of the world point \mathbf{M}. Given corresponding points \mathbf{m} and \mathbf{m}^{\prime}, recovering \mathbf{M} in this manner is known as triangulation. Author: N. Khan (2021)

Epipoles

Figure: The image of one camera center in the other camera is called the epipole. Given calibrated cameras P and P^{\prime}, epipoles of the stereo setup can be computed as, $\mathbf{e} \equiv P \tilde{\mathbf{C}}^{\prime}$ and $\mathbf{e}^{\prime} \equiv P^{\prime} \tilde{\mathbf{C}}$. Author: N. Khan (2021)

Epipolar Line

Figure: Given m, world point \mathbf{M} can potentially lie anywhere along the back-projected ray. Therefore, in the second view, corresponding point \mathbf{m}^{\prime} can lie anywhere along the image of the back-projected ray. Author: N. Khan (2021)

Epipolar Line

Figure: Image of the back-projected ray is called the epipolar line I'. Since it must pass through \mathbf{m}^{\prime} and the epipole \mathbf{e}^{\prime}, it can be computed as $\mathbf{I}^{\prime} \equiv \mathbf{m}^{\prime} \times \mathbf{e}^{\prime}$. Author: N. Khan (2021)

Epipolar Geometry

Figure: Line \mathbf{I}^{\prime} is the epipolar line in the second camera corresponding to pixel \mathbf{m} in the first camera. Similarly, $\mathbf{I} \equiv \mathbf{m} \times \mathbf{e}$ is the epipolar line in the first camera corresponding to pixel \mathbf{m}^{\prime} in the second camera. Each pixel in one view has a corresponding epipolar line in the other view. Author: N. Khan (2021)

Epipolar Plane

Figure: The world point \mathbf{M} (alternatively, pixel \mathbf{m}) and the two camera centers \mathbf{C} and \mathbf{C}^{\prime} define a plane in 3D called the epipolar plane. Notice that corresponding points $\mathbf{m}, \mathbf{m}^{\prime}$, epipoles $\mathbf{e}, \mathbf{e}^{\prime}$, and epipolar lines $\mathbf{I}, \mathbf{I}^{\prime}$ also lie on the epipolar plane. Author: N. Khan (2021)

Epipolar Plane

Figure: Any two points of a planar surface are related by an invertible 3×3 matrix, i.e., homography. We will denote the homography that maps \mathbf{m} to \mathbf{m}^{\prime} by H_{π}. Therefore, $\mathbf{m}^{\prime} \equiv H_{\pi} \mathbf{m}$. Author: N. Khan (2021)

Fundamental Matrix

- Gathering everything together

$$
\begin{aligned}
\mathbf{I}^{\prime} & \equiv \mathbf{e}^{\prime} \times \mathbf{m}^{\prime} \\
& \equiv \mathbf{e}^{\prime} \times H_{\pi} \mathbf{m} \\
& \equiv\left[\mathrm{e}^{\prime}\right]_{\times} H_{\pi} \mathbf{m} \\
& \equiv F \mathbf{m}
\end{aligned}
$$

- The 3×3 matrix F is called the fundamental matrix.
- It maps any pixel in the first camera to its corresponding epipolar line in the second camera.
- Note that $\operatorname{rank}(F)=2$.

$$
\operatorname{rank}(F)=\min \left(\operatorname{rank}\left(\left[\mathbf{e}^{\prime}\right]_{\times}\right), \operatorname{rank}\left(H_{\pi}\right)\right)=\min (2,3)=2
$$

- F has 7 degrees of freedom (9 parameters -1 for scale -1 for rank)

Epipolar Constraint

- Since \mathbf{m}^{\prime} lies on the epipolar line \mathbf{I}^{\prime}

$$
\begin{aligned}
\mathrm{m}^{\prime} \mathbf{I}^{\prime} & =0 \\
\Longrightarrow \mathrm{~m}^{\prime \top} \mathrm{Fm} & =0
\end{aligned}
$$

- This is known as the epipolar constraint.
- Corresponding points \mathbf{m} and \mathbf{m}^{\prime} must satisfy the epipolar constraint.

Fundamental Matrix Estimation

- When cameras are not calibrated, F can be estimated via $N \geq 8$ correspondences $\mathbf{m}_{i}, \mathbf{m}_{i}^{\prime}$.
- Epipolar constraint can be written as

$$
\begin{aligned}
0= & \mathbf{m}^{\prime \top} F \mathbf{m}=\left[\begin{array}{lll}
x^{\prime} & y^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
= & x x^{\prime} f_{11}+y x^{\prime} f_{12}+x^{\prime} f_{13} \\
= & +x y^{\prime} f_{21}+y y^{\prime} f_{22}+y^{\prime} f_{23} \\
& \quad+x f_{31}+y f_{32}+f_{33} \\
= & \mathbf{s}^{T} \mathbf{f}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{s}=\left[\begin{array}{lllllllll}
x x^{\prime} & y x^{\prime} & x^{\prime} & x y^{\prime} & y y^{\prime} & y^{\prime} & x & y & 1
\end{array}\right]^{T} \\
& \mathbf{f}=\left[\begin{array}{lllllllll}
f_{11} & f_{12} & f_{13} & f_{21} & f_{22} & f_{23} & f_{31} & f_{32} & f_{33}
\end{array}\right]^{T}
\end{aligned}
$$

Fundamental Matrix Estimation

- Vector f can be estimated by minimizing the sum-squared-error

$$
E(\mathbf{f})=\sum_{i=1}^{N}\left(\mathbf{s}_{i}^{T} \mathbf{f}\right)^{2}=\sum_{i=1}^{N}\left(\mathbf{s}_{i}^{T} \mathbf{f}\right)^{T}\left(\mathbf{s}_{i}^{T} \mathbf{f}\right)=\mathbf{f}^{T} \underbrace{\left(\sum_{i=1}^{N} \mathbf{s}_{i} \mathbf{s}_{i}^{T}\right)}_{A} \mathrm{f}
$$

subject to $\|\mathbf{f}\|=1$ to avoid the trivial solution $\mathbf{f}=\mathbf{0}$.

- Constrained optimization problem

$$
\mathbf{f}^{*}=\arg \min _{\mathbf{f}} \mathbf{f}^{T} A \mathbf{f} \quad \text { s.t. }\|\mathbf{f}\|=1
$$

- \mathbf{f}^{*} is the eigenvector of A corresponding to the smallest eigenvalue.
- \mathbf{f}^{*} can be reshaped to yield the fundamental matrix F.

Enforcing Rank-2 Constraint

- Recall that $\operatorname{rank}(F)$ must be 2 .
- If necessary, this can be enforced via SVD.
- SVD allows F to be decomposed as a product of three rank-3 matrices

$$
F=U D V^{\top}
$$

where

$$
D=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right]
$$

with $\sigma_{i}=\sqrt{\lambda_{i}\left(F^{\top} F\right)}$.

- Replacing σ_{3} by 0 and multiplying the three matrices together yields the closest rank-2 approximation of F.

Stereo Setups

Parallel Camera Stereo Rig

Stereo Setups

Forward Translating Camera

Stereo Correspondence

Triangulation

