CS-565 Computer Vision

Nazar Khan

Department of Computer Science University of the Punjab

20. Stereo Reconstruction

So far ...

 Epipolar geometry relates points in one view to lines in the other view using the fundamental matrix

$$I' = F\tilde{m}$$

Fundamental matrix can be estimated using linear methods from at least 8 point correspondences $\mathbf{m}_i \leftrightarrow \mathbf{m}'_i$.

In this lecture ...

1. Search: Given point **m** in view 1 and its epipolar line l' in view 2, how can we find the corresponding point **m**' in view 2?

2. Estimation: Given corresponding points m, m', how can we find the scene point M?

Stereo Reconstruction via F

The fundamental-matrix method for reconstructing the scene is very simple, consisting of the following steps:

- 1. Given several point correspondences $\mathbf{m}_i \leftrightarrow \mathbf{m}'_i$ across two views, form linear equations in the entries of F based on the epipolar constraint $\tilde{\mathbf{m}}_i^{\prime T} F \tilde{\mathbf{m}}_i = 0$.
- 2. Find F as the solution to a set of linear equations.
- 3. Compute a pair of camera matrices (P, P') from F according to the simple formula

$$P = \begin{bmatrix} I & \mathbf{0} \end{bmatrix}$$
$$P' = \begin{bmatrix} [\mathbf{e}']_{\times}F & \mathbf{e}' \end{bmatrix}$$

4. Given the two cameras (P, P') and the corresponding image point pairs $\mathbf{m}_i \leftrightarrow \mathbf{m}'_i$, triangulate the 3D points \mathbf{M}_i .

Stereo Reconstruction via *F Caution! Projective Ambiguity*

- If H is any 4 × 4 invertible matrix, representing a projective transformation of P³, then replacing points M̃_i by H̃M_i and matrices P and P' by PH⁻¹ and P'H⁻¹ does not change the image points.
- ▶ In other words, given correspondences $\tilde{\mathbf{m}}_i \leftrightarrow \tilde{\mathbf{m}}'_i$, the two different reconstructions of scene points and cameras

Ω̃ <i>i</i>		ΗÑi
Ρ	and	PH^{-1}
P'		$P'H^{-1}$

yield the same image points.

This shows that the points M
_i and the cameras P and P' can be determined at best only up to a projective transformation.

Stereo Correspondence

- ▶ Given m, describe surrounding region as a vector x which could be as simple as the raw pixel values in a window around m.
- For every point n on epipolar line l', similarly describe surrounding region as a vector y.
- The most deserving corresponding points should have the highest normalized correlation

$$\mathbf{m}' = \arg \max_{\mathbf{n} \in \mathbf{I}'} \frac{(\mathbf{x} - \bar{\mathbf{x}})^T}{\|\mathbf{x} - \bar{\mathbf{x}}\|} \frac{(\mathbf{y} - \bar{\mathbf{y}})}{\|\mathbf{y} - \bar{\mathbf{y}}\|}$$

which is just the dot-product of mean-centered, normalized vectors.

▶ Normalized correlation lies between -1 (when x = -y) and +1 (when x = y). It is 0 when $x \perp y$.

Stereo Correspondence

- Weakness: Using correlation of regions implicitly assumes that observed surface is locally parallel to both image planes.
- If surface is not parallel, then regions around *correct* corresponding points will have different content due to *foreshortening*.
- More sophisticated techniques, such as variational methods, can also be used to find corresponding points.

Triangulation

- \blacktriangleright In practice, correspondences $m\leftrightarrow m'$ are never perfect due to noise and quantization effects.
- ► Therefore back-projected rays will never intersect in 3*D*.

▶ Instead, we find an *optimal estimate* of the scene point M.

Triangulation

• Since $\tilde{\mathbf{m}} \equiv P\tilde{\mathbf{M}}$, vectors $\tilde{\mathbf{m}}$ and $P\tilde{\mathbf{M}}$ must point in the same direction. This gives us 3 equations

$$\widetilde{\mathbf{m}} \times P\widetilde{\mathbf{M}} = \mathbf{0}$$

$$\implies \begin{cases} x \left(\mathbf{p}^{3T}\widetilde{\mathbf{M}} \right) - \left(\mathbf{p}^{1T}\widetilde{\mathbf{M}} \right) = \mathbf{0} \\ y \left(\mathbf{p}^{3T}\widetilde{\mathbf{M}} \right) - \left(\mathbf{p}^{2T}\widetilde{\mathbf{M}} \right) = \mathbf{0} \\ x \left(\mathbf{p}^{2T}\widetilde{\mathbf{M}} \right) - y \left(\mathbf{p}^{1T}\widetilde{\mathbf{M}} \right) = \mathbf{0} \end{cases}$$

that are linear in entries of ${\bf M}$ and only 2 equations are linearly independent.

Similarly, 2 equations constrain M from the second view.

$$\begin{aligned} x'\left(\mathbf{p}^{\prime3T}\tilde{\mathbf{M}}\right) - \left(\mathbf{p}^{\prime1T}\tilde{\mathbf{M}}\right) &= 0\\ y'\left(\mathbf{p}^{\prime3T}\tilde{\mathbf{M}}\right) - \left(\mathbf{p}^{\prime2T}\tilde{\mathbf{M}}\right) &= 0 \end{aligned}$$

Triangulation

- All 4 equations can be arranged as the homogenous linear system $A\tilde{M} = 0$

$$\begin{bmatrix} x \mathbf{p}^{3T} - \mathbf{p}^{1T} \\ y \mathbf{p}^{3T} - \mathbf{p}^{2T} \\ x' \mathbf{p}'^{3T} - \mathbf{p}'^{1T} \\ y' \mathbf{p}'^{3T} - \mathbf{p}'^{2T} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ W \end{bmatrix} = \mathbf{0}$$

- As in the DLT algorithm for homography estimation, M can be estimated as the eigenvector of A^TA corresponding to the smallest eigenvalue.
- Notice how this method neatly generalizes to more than 2 views. For example, a third view P" would have added 2 more rows in matrix A.

Summary

- Fundamental matrix is all we need.
- Camera matrices P and P' can be estimated from F upto a projective ambiguity.
- Search for corresponding points along epipolar lines can be performed using normalized correlation.
- ► Triangulation for scene point M can be performed via DLT.