CS-565 Computer Vision

Nazar Khan

Department of Computer Science
University of the Punjab
20. Stereo Reconstruction

So far . . .

- Epipolar geometry relates points in one view to lines in the other view using the fundamental matrix

$$
\mathbf{I}^{\prime}=F \tilde{\mathbf{m}}
$$

- Fundamental matrix can be estimated using linear methods from at least 8 point correspondences $\mathbf{m}_{i} \leftrightarrow \mathbf{m}_{i}^{\prime}$.

In this lecture ...

1. Search: Given point \mathbf{m} in view 1 and its epipolar line I^{\prime} in view 2 , how can we find the corresponding point \mathbf{m}^{\prime} in view 2 ?

2. Estimation: Given corresponding points $\mathbf{m}, \mathbf{m}^{\prime}$, how can we find the scene point M ?

Stereo Reconstruction via F

The fundamental-matrix method for reconstructing the scene is very simple, consisting of the following steps:

1. Given several point correspondences $\mathbf{m}_{i} \leftrightarrow \mathbf{m}_{i}^{\prime}$ across two views, form linear equations in the entries of F based on the epipolar constraint $\tilde{\mathbf{m}}_{i}^{\prime T} F \tilde{\mathbf{m}}_{i}=0$.
2. Find F as the solution to a set of linear equations.
3. Compute a pair of camera matrices $\left(P, P^{\prime}\right)$ from F according to the simple formula

$$
\begin{aligned}
P & =\left[\begin{array}{ll}
I & 0
\end{array}\right] \\
P^{\prime} & =\left[\begin{array}{ll}
\left.\mathbf{e}^{\prime}\right]_{\times} F & \mathbf{e}^{\prime}
\end{array}\right]
\end{aligned}
$$

4. Given the two cameras $\left(P, P^{\prime}\right)$ and the corresponding image point pairs $\mathbf{m}_{i} \leftrightarrow \mathbf{m}_{i}^{\prime}$, triangulate the $3 D$ points \mathbf{M}_{i}.

Stereo Reconstruction via F

- If H is any 4×4 invertible matrix, representing a projective transformation of \mathbb{P}^{3}, then replacing points $\tilde{\mathrm{M}}_{i}$ by $H \tilde{\mathrm{M}}_{i}$ and matrices P and P^{\prime} by $P H^{-1}$ and $P^{\prime} H^{-1}$ does not change the image points.
- In other words, given correspondences $\tilde{\mathbf{m}}_{i} \leftrightarrow \tilde{\mathbf{m}}_{i}^{\prime}$, the two different reconstructions of scene points and cameras

$\tilde{\mathrm{M}}_{i}$		$H \tilde{\mathrm{M}}_{i}$
P	and	$P H^{-1}$
P^{\prime}		$P^{\prime} H^{-1}$

yield the same image points.

- This shows that the points $\tilde{\mathrm{M}}_{i}$ and the cameras P and P^{\prime} can be determined at best only up to a projective transformation.

Stereo Correspondence

- Given \mathbf{m}, describe surrounding region as a vector x which could be as simple as the raw pixel values in a window around \mathbf{m}.
- For every point \mathbf{n} on epipolar line \mathbf{I}^{\prime}, similarly describe surrounding region as a vector \mathbf{y}.
- The most deserving corresponding points should have the highest normalized correlation

$$
m^{\prime}=\arg \max _{n \in I^{\prime}} \frac{(x-\bar{x})^{T}}{\|x-\bar{x}\|} \frac{(y-\bar{y})}{\|y-\bar{y}\|}
$$

which is just the dot-product of mean-centered, normalized vectors.

- Normalized correlation lies between -1 (when $\mathbf{x}=-\mathbf{y}$) and +1 (when $x=y$). It is 0 when $x \perp y$.

Stereo Correspondence

- Weakness: Using correlation of regions implicitly assumes that observed surface is locally parallel to both image planes.
- If surface is not parallel, then regions around correct corresponding points will have different content due to foreshortening.
- More sophisticated techniques, such as variational methods, can also be used to find corresponding points.

Triangulation

- In practice, correspondences $\mathbf{m} \leftrightarrow \mathbf{m}^{\prime}$ are never perfect due to noise and quantization effects.
- Therefore back-projected rays will never intersect in 3D.

- Instead, we find an optimal estimate of the scene point M .

Triangulation

- Since $\tilde{\mathbf{m}} \equiv P \tilde{\mathrm{M}}$, vectors $\tilde{\mathbf{m}}$ and $P \tilde{\mathrm{M}}$ must point in the same direction. This gives us 3 equations

$$
\begin{aligned}
& \tilde{\mathbf{m}} \times P \tilde{\mathbf{M}}=\mathbf{0} \\
\Longrightarrow & \left\{\begin{array}{c}
x\left(\mathbf{p}^{3 T} \tilde{\mathbf{M}}\right)-\left(\mathbf{p}^{1 T} \tilde{\mathbf{M}}\right)=0 \\
y\left(\mathbf{p}^{3 T} \tilde{\mathbf{M}}\right)-\left(\mathbf{p}^{2 T} \tilde{\mathbf{M}}\right)=0 \\
x\left(\mathbf{p}^{2 T} \tilde{\mathbf{M}}\right)-y\left(\mathbf{p}^{1 T} \tilde{\mathbf{M}}\right)=0
\end{array}\right.
\end{aligned}
$$

that are linear in entries of M and only 2 equations are linearly independent.

- Similarly, 2 equations constrain M from the second view.

$$
\begin{aligned}
& x^{\prime}\left(\mathbf{p}^{\prime 3 T} \tilde{\mathbf{M}}\right)-\left(\mathbf{p}^{\prime 1 T} \tilde{\mathrm{M}}\right)=0 \\
& y^{\prime}\left(\mathbf{p}^{\prime 3 T} \tilde{\mathrm{M}}\right)-\left(\mathbf{p}^{\prime 2 T} \tilde{\mathrm{M}}\right)=0
\end{aligned}
$$

Triangulation

- All 4 equations can be arranged as the homogenous linear system $A \tilde{M}=0$

$$
\left[\begin{array}{c}
x \mathbf{p}^{3 T}-\mathbf{p}^{1 T} \\
y \mathbf{p}^{3 T}-\mathbf{p}^{2 T} \\
x^{\prime} \mathbf{p}^{\prime 3 T}-\mathbf{p}^{\prime 1 T} \\
y^{\prime} \mathbf{p}^{\prime 3 T}-\mathbf{p}^{\prime 2 T}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right]=\mathbf{0}
$$

- As in the DLT algorithm for homography estimation, \tilde{M} can be estimated as the eigenvector of $A^{T} A$ corresponding to the smallest eigenvalue.
- Notice how this method neatly generalizes to more than 2 views. For example, a third view $P^{\prime \prime}$ would have added 2 more rows in matrix A.

Summary

- Fundamental matrix is all we need.
- Camera matrices P and P^{\prime} can be estimated from F upto a projective ambiguity.
- Search for corresponding points along epipolar lines can be performed using normalized correlation.
- Triangulation for scene point M can be performed via DLT.

