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Why Deep Learning?

I Most CV problems are increasingly being solved via Deep Learning (DL).
I DL mimics learning in biological brains.
I DL can sometimes beat human performance.
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What is Deep Learning?

I Imagine that you have a dataset of input vectors x1, x2, . . . , xN that you
want to map to corresponding targets t1, t2, . . . , tN .

I Assume you have function y = f1(x;w1) that maps inputs x to outputs y
using parameters w1.

I You would want parameters w1 to be such that f1 maps inputs to targets.
I Any parameters w1 can be evaluated via an error function over the dataset

E (w1) =
1
2

N∑
n=1

(yn − tn)
2 =

1
2

N∑
n=1

(f1(xn;w1)− tn)
2

I Optimal w∗1 can be found as

w∗1 = argmin
w1

E (w1)

I Such automatic learning of parameters w∗1 is called machine learning.
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What is Deep Learning?

I We can use output of f1 as input to another function f2 with parameters
w2.

y = f2(f1(x;w1);w2)

I Composition of both functions yields a more powerful function.
I Parameters w1,w2 can be evaluated as before

E (w1,w2) =
1
2

N∑
n=1

(yn − tn)
2 =

1
2

N∑
n=1

(f2(f1(xn;w1);w2)− tn)
2

I Parameters can be learned as before

w∗1,w
∗
2 = arg min

w1,w2
E (w1,w2)

I Learning a sequence of such function f1, f2, . . . , fL with parameters
w1,w2, . . . ,wL is called deep learning.
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Minimization

I Minima of a function E (θ) are characterized by the condition

∇θE = 0

I To reach a (local) minimum, gradient descent can be used

θτ+1 = θτ − η ∇θE |θτ

I Modern deep learning frameworks provide
I more sophisticated methods of reaching local minima (Adam, AdaGrad,

etc.), and
I automatic computation of gradient ∇θE .

Therefore, we will assume that gradient computation and error
minimization is always available.

I Just need to implement the error function for your problem.
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The Artificial Neuron

I An artificial neuron is a very simple non-linear function

f (x;w) = h(wTx+ b)

where h is usually the ReLU function

h(a) = ReLU(a) =

{
a a ≥ 0
0 a < 0

I A neuron can be viewed as a detector of its own weights.
I When wTx is high, neuron is more likely to fire.
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Neural Networks

Figure: A simple 3 layer neural network mapping scalar input x to scalar output y .
Author: N. Khan (2021)
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Neural Networks

Figure: A simple 3 layer neural network with hidden neurons folded in space (viewed
as vectors). Author: N. Khan (2021)
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Neural Networks

Figure: A general 3 layer neural network with vector inputs, vector hidden layers and
vector outputs. Author: N. Khan (2021)
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Loss Functions for Machine Learning

Notation:
I Let x ∈ R denote a univariate input.
I Let x ∈ RD denote a multivariate input.
I Same for targets t ∈ R and t ∈ RK .
I Same for outputs y ∈ R and y ∈ RK .
I Let θ denote the set of all learnable parameters of a machine

learning model.
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Loss Functions for Machine Learning
Regression

I Univariate

L(θ) =
1
2

N∑
n=1

(yn − tn)
2

I Multivariate

L(θ) =
1
2

N∑
n=1

‖yn − tn‖2

I Known as half-sum-squared-error (SSE) or `2-loss.
I Verify that both losses are 0 when outputs match targets for all n.

Otherwise, both losses are greater than 0.
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Background
Probability and Negative of Natural Logarithm

I Logarithm is a monotonically increasing function.
I Probability lies between 0 and 1.
I Between 0 and 1, logarithm is negative.
I So − ln(p(x)) approaches ∞ for p(x) = 0 and 0 for p(x) = 1.
I Can be used as a loss function.
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Loss Functions for Machine Learning
Binary Classification

I For two-class classification, targets can be binary.
I tn = 0 if xn belongs to class C0.
I tn = 1 if xn belongs to class C1.

I If output yn can be restricted to lie between 0 and 1, we can treat it as
probability of xn belonging to class C1. That is, yn = P(C1|xn).

I Then 1− yn = P(C0|xn).
I Ideally,

I yn should be 1 if xn ∈ C1, and
I 1− yn should be 1 if xn ∈ C0.

I Equivalently,
I − ln yn should be 0 if xn ∈ C1, and
I − ln(1− yn) should be 0 if xn ∈ C0.

Nazar Khan Computer Vision 13 / 29



Neural Networks Loss Functions Activation Functions Regularization

Loss Functions for Machine Learning
Binary Classification

I So depending upon tn, either − ln yn or − ln(1− yn) should be considered
as loss.

I Using tn to pick the relevant loss, we can write total loss as

L(θ) = −
N∑

n=1

tn ln yn + (1− tn) ln(1− yn)

I Known as binary cross-entropy (BCE) loss.
I Verify that BCE loss is 0 when outputs match targets for all n. Otherwise,

loss is greater than 0.
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Loss Functions for Machine Learning
Multiclass Classification

I For multiclass classification, targets can be represented
using 1-of-K coding. Also known as 1-hot vectors.

I 1-hot vector: only one component is 1. All the rest
are 0.

I If tn3 = 1, then xn belongs to class 3.
I If outputs of K neurons can be restricted to

1. 0 ≤ ynk ≤ 1, and
2.

∑K
k=1 ynk = 1,

then we can treat outputs as probabilities.
I Later, we shall see activation functions that produce

per-class probability values.

tn =


0
0
1
0
0



yn =


P(C1|xn)
P(C2|xn)
P(C3|xn)
P(C4|xn)
P(C5|xn)
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Loss Functions for Machine Learning
Multiclass Classification

I Similar to BCE loss, we can use tnk to pick the relevant negative log loss
and write overall loss as

L(θ) = −
N∑

n=1

K∑
k=1

tnk ln ynk

I Known as multiclass cross-entropy (MCE) loss.
I Verify that MCE loss is 0 when outputs match targets for all n.

Otherwise, loss is greater than 0.
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Activation Functions

I Recall that a perceptron has a non-differentiable activation function, i.e.,
step function.

I Zero-derivative everywhere except at 0 where it is non-differentiable.

I Prevents gradient descent.
I Can we use a smooth activation function that behaves similar to a step

function?
I Perceptron with a smooth activation function is called a neuron.
I Neural networks are also called multilayer perceptrons (MLP) even though

they do not contain any perceptron.
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Logistic Sigmoid Function

I For a ∈ R, the logistic sigmoid function is given by σ(a) = 1
1+e−a

I Sigmoid means S-shaped.
I Maps −∞ ≤ a ≤ ∞ to the range 0 ≤ σ ≤ 1. Also called squashing

function.
I Can be treated as a probability value.

a

σ(a)

0.5

1
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Activation Functions

Regression
I Univariate: use 1 output neuron with identity activation function

y(a) = a.
I Multivariate: use K output neurons with identity activation functions

y(ak) = ak .
Classification

I Binary: use 1 output neuron with logistic sigmoid y(a) = σ(a).
I Multiclass: use K output neurons with softmax activation function.
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Softmax Activation Function

What happens inside a softmax layer
Softmax

layer
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I For real numbers a1, . . . , aK , the softmax function is given by

y(ak ; a1, a2, . . . , aK ) =
eak∑K
i=1 e

ai

I Output of k-th neuron depends on activations of all neurons in the same
layer.
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Softmax Activation Function

I Softmax is ≈ 1 when ak >> aj ∀j 6= k and ≈ 0 otherwise.
I Provides a smooth (differentiable) approximation to finding the index of

the maximum element.
I Compute softmax for 1, 10, 100.
I Does not work everytime.

I Compute softmax for 1, 2, 3. Solution: multiply by 100.
I Compute softmax for 1, 10, 1000. Solution: subtract maximum before

computing softmax.

I Also called the normalized exponential function.
I Since 0 ≤ yk ≤ 1 and

∑K
k=1 yk = 1, softmax outputs can be treated as

probability values.
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Logistic Sigmoid

a

Activation function y(a) = 1
1+e−a

Derivative y ′(a) = y(a)(1− y(a))
Maximum magnitude of derivative 1

4
Problem Cause vanishing gradients
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Hyperbolic Tangent

a

Activation function y(a) = tanh(a)
Derivative y ′(a) = 1− y2(a)
Maximum magnitude of derivative 1
Problem Cause vanishing gradients
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Rectified Linear Unit (ReLU)

a

Activation function y(a) =

{
a if a > 0
0 if a ≤ 0

Derivative y ′(a) =

{
1 if a > 0
0 if a ≤ 0

Advantage Avoids vanishing gradients
Problem Dead neurons1

1This can be an advantage as well since death implies fewer neurons.
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Leaky ReLU

a

Activation function y(a) =

{
a if a > 0
ka if a ≤ 0

where 0 ≤ k ≤ 1

Derivative y ′(a) =

{
1 if a > 0
k if a ≤ 0

Advantage Neuron is always learning
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Exponential Linear Unit (ELU)

a

Activation function y(a) =

{
a if a > 0
k(ea − 1) if a ≤ 0

where k > 0

Derivative y ′(a) =

{
1 if a > 0
y(a) + k if a ≤ 0

Maximum magnitude of derivative 1
Advantage Neuron is mostly learning
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Activation Functions
Summary

Name y(a) Plot y ′(a) Comments
Logistic sigmoid 1

1+e−a a y(a)(1− y(a)) Vanishing gradients

Hyperbolic tangent tanh(a)
a

1− y2(a) Vanishing gradients

Rectified Linear Unit
(ReLU)

{
a if a > 0
0 if a ≤ 0

a

{
1
0

Dead neurons.
Sparsity.

Leaky ReLU

{
a if a > 0
ka if a ≤ 0

a

{
1
k

0 < k < 1

Exponential Linear Unit
(ELU)

{
a if a > 0
k(ea − 1) if a ≤ 0

a

{
1
y(a) + k

k > 0.

I Saturated sigmoidal neurons stop learning. Piecewise-linear units keep
learning by avoiding saturation.

I ELU has been shown to lead to better accuracy and faster training.
I Take home message: For hidden neurons, use a member of the LU family.

They avoid i) saturation and ii) the vanishing gradient problem.
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Regularization in Neural Networks

I A model that performs well on training data but poorly on test data is
said to be over-fitting.

I Over-fitting can be lessened via regularization which can be understood as
restricting the power of the model.

1. Penalise magnitudes of weights: L̃(w) = L(w) + λ
2 ‖w‖

2.
2. Dropout: During training, a randomly selected subset of activations are set

to zero within each layer.
3. Early stopping by checking E (w) on a validation set. Stop when error on

validation set starts increasing.
4. Training with augmented/transformed data.
5. Batch Normalization.
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Summary

I Deep learning can no longer be avoided by a CV practitioner.
I Very brief introduction to deep learning.
I Enough to get you started.
I Proper understanding can be obtained through a complete deep learning

course.
I Overall idea: transform input x into another representation f(x) which is

more useful for making decisions about x.
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