
CS-565 Computer Vision

Nazar Khan

Department of Computer Science
University of the Punjab

23. Convolutional Neural Networks



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

A Neuron as a Detector

I A neuron can be viewed as a detector.
I When it fires, the input must have been similar to its weights.

I Firing =⇒ wTx was high =⇒ w was similar to x
I So neuron firing indicates detection of something similar to its weights.

uTv = ‖u‖‖v‖ cos θ

I Since −1 ≤ cos θ ≤ 1, uTv is highest when cos θ = 1
I That happens when θ = 0
I That happens when vectors u and v point in the same direction.

Nazar Khan Computer Vision 2 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Convolutional Neural Networks

I Now we will look at networks that produce neuronal output via
convolution.

I Known as Convolutional Neural Networks (CNNs).
I Most frequently used network architecture.
I Exploits local correlation of inputs.

Nazar Khan Computer Vision 3 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Building Blocks of CNNs
Viewing convolution as neurons

Single channel input

�

����(� ∗ )�1

Subsample

�1

∗

Multichannel input

�

����(� ∗ )�1

Subsample

�1

∗

Nazar Khan Computer Vision 4 / 36



Building blocks of CNNs

∗ ∗∗

�

Subsample

����(� ∗ )�1

�1 �2 ��

Subsample

����(� ∗ )�2

Subsample

����(� ∗ )��



Building blocks of CNNs

��

∗ ∗∗

�

Subsample

����(� ∗ )�1

Subsample

����(� ∗ )�2

Subsample

����(� ∗ )��

�1

Input image
transformed into a
new representation
of M channels.



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

CNN

I Convolution by M filters produces M channels.
I They represent an M-channel transformation of the input image I .
I This M-channel image can now be transformed further via additional

convolution filters.
I Convolution-subsampling block can be repeated multiple times.
I I → M1 channels → M2 channels → · · · → Mb channels → flattening →

MLP.

�
Conv+Subsample

6 filters
Conv+Subsample

12 filters
Flattening

40 × 40 × 3 20 × 20 × 6 10 × 10 × 12 1200 × 1

Fully
connected

MLP

Nazar Khan Computer Vision 7 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Convolutional layer

I Consists of multiple arrays of neurons. Each such array is called a slice or
more accurately feature map.

I Each neuron in a feature map
I is connected to only few neurons in the previous layer, but
I uses the same weight values as all other neurons in that feature map.

I So within a feature map, we have both
I local receptive fields, and
I shared weights.

Nazar Khan Computer Vision 8 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Convolutional layer

I Example: A feature map may have
I 100 neurons placed in a 10× 10 array, with
I each neuron getting input from a 5× 5 patch of neurons in the previous

layer (receptive field), and
I the same 26(= 5× 5+ 1) weights shared between these 100 neurons.

I Viewed as detectors, all 100 neurons detect the same 5× 5 pattern
but at different locations of the previous layer.

I Different feature maps will learn1 to detect different kinds of patterns.
I For example, one feature map might learn to detect horizontal edges while

others might learn to detect vertical or diagonal edges and so on.

1based on their learned weights
Nazar Khan Computer Vision 9 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Convolutional layer

I To compute activations of the 100 neurons, a dot-product is computed
between the same shared weights and different 5× 5 patches of previous
layer neurons.

I This is equivalent to sliding a window of weights over the previous
layer and computing the dot-product at each location of the
window.

I Therefore, activations of the feature map neurons are computed via
convolution of the previous layer with a kernel comprising the shared
weights. Hence the name of this layer.

Nazar Khan Computer Vision 10 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Subsampling layer

I Reduces the spatial dimensions of the previous layer by downsampling.
Also called pooling layer.

I Example: downsampling previous layer of n × n neurons by factor 2 yields
a pooled layer of n

2 ×
n
2 neurons.

I No adjustable weights. Just a fixed downsampling procedure.
I Reduces computations in subsequent layers.
I Reduces number of weights in subsequent layers. This reduces overfitting.

Nazar Khan Computer Vision 11 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Subsampling

I Options: From non-overlapping 2× 2 patches
I pick top-left (standard downsampling by factor 2)
I pick average (mean-pooling)
I pick maximum (max-pooling)
I pick randomly (stochastic-pooling)

I Fractional max-pooling: pick pooling region randomly.

Figure: Max-pooling with 2× 2 receptive fields, and stride of 2 neurons. Source:
http://cs231n.github.io/convolutional-networks/

Nazar Khan Computer Vision 12 / 36

http://cs231n.github.io/convolutional-networks/


CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Subsampling

I The options in the last slide discard 75% of the data.
I They correspond to

I neurons with 2× 2 receptive fields, and
I stride of 2 neurons.

I This is the most commonly used configuration. Other options exist but
note that pooling with larger receptive fields discards too much data.

I Subsampling layer can be skipped if convolution layers uses stride>1 since
that also produces a subsampled output.

Nazar Khan Computer Vision 13 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Subsampling

A pooling layer
I with F × F receptive field and stride S ,
I "looking at" a W1 × H1 × D1 input volume,
I produces a W2 × H2 × D2 output volume, where

I W2 = W1−F
S + 1

I H2 = H1−F
S + 1

I D2 = D1.

Nazar Khan Computer Vision 14 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Fully Connected Layers

I After flattening, fully connected layers(s) can be used.
I The last layer has

I neurons equal to the desired output size, and
I activation functions based on the problem to be solved.

I The flattened layer can therefore be viewed as a transformation φ(x) that
is fed into a sub-network of fully connected layers.

I Similarly, outputs of earlier layers are intermediate representations of the
input.

Nazar Khan Computer Vision 15 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Intermediate Representations

Intermediate feature representations. Early layers form simple, low-level representations of
the input. They are used to incrementally form more complex, high-level representations.

Source: http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf
Nazar Khan Computer Vision 16 / 36

http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf


CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Cost of Convolution Layer

Conv

Cost = # multiplications = (128× 128× 64)︸ ︷︷ ︸
Output neurons

× (5× 5× 256)︸ ︷︷ ︸
Cost per neuron

= 6710886400
= 6.7 billion

Nazar Khan Computer Vision 17 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

1× 1 convolution

ConvConv

Cost =

(128× 128× 32)︸ ︷︷ ︸
Output neurons

× (1× 1× 256)︸ ︷︷ ︸
Cost per neuron

+

(128× 128× 64)︸ ︷︷ ︸
Output neurons

× (5× 5× 32)︸ ︷︷ ︸
Cost per neuron


= 134217728+ 838860800
= 973078528 = 0.97 billion

Almost 7 times reduction in number of multiplications to produce output
volume of the same size.
Nazar Khan Computer Vision 18 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

1× 1 convolution

I A 1× 1 convolution is just a linear combination of the input channels.
I The fully connected layer of a traditional MLP can also be represented via

1× 1 convolutions.

Nazar Khan Computer Vision 19 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Depthwise Separable Convolution
What happens in standard convolution?

Consider the case of standard convolution using 3 filters.

Conv

Number of weights to produce 3 channel output = 3× 3× 6× 3 = 162.

Nazar Khan Computer Vision 20 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Depthwise Separable Convolution
What happens in standard convolution?

The first output channel is produced by 6 channel-wise convolutions that are
then added together.

Sum

Nazar Khan Computer Vision 21 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Depthwise Separable Convolution
What happens in standard convolution?

Summation of per-channel results corresponds to 1× 1 convolution with a
volume of 1s.

Sum

Nazar Khan Computer Vision 22 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Depthwise Separable Convolution

Replace sum by a linear combination. This is called a depthwise separable
convolution.

Nazar Khan Computer Vision 23 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Depthwise Separable Convolution

Multiple linear combinations lead to multiple output channels.

Number of weights to produce 3 channel output = (3× 3× 6) + (6× 3) = 72.

Expensive convolution (excluding the summation) is performed only once.
Multiple channels are produced via cheap 1× 1 convolution.

Nazar Khan Computer Vision 24 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Transposed Convolution

3 -1 5

17 5 4

0 9 13

A transposed convolution superimposes copies of the filter F scaled by the
values in input I . Can be used to increase size.

+

Nazar Khan Computer Vision 25 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Unpooling

X

X

XX

Input Pooling Unpooling

Reverses the size reduction effect of subsampling.

Nazar Khan Computer Vision 26 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Fully Convolutional Networks (FCN)

I An architecture for semantic segmentation.
I Only locally connected layers: convolution, pooling and upsampling.
I No fully connected layers (fewer parameters, faster training).
I Input image can be of any size.

Nazar Khan Computer Vision 27 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

The problem with fully connected layers

32 C+S 64 C+S Flatten

I K -class classification of an input image requires K softmax neurons at the
output.

I 1024 neurons in fully connected layer imply that H ×W must equal 256.
I So this can work with images of a certain size.

Nazar Khan Computer Vision 28 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Fully Convolutional Networks

32 C+S 64 C+S 4 1x1 convolutions Global
Pooling

I K 1× 1 convolutions corresponding to K classes.
I Followed by global pooling in each of the K channels.
I Followed by softmax.
I Can work with images of any size.

Nazar Khan Computer Vision 29 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Image Generation via CNN

4 6

-8 23

4

6

-8 23

Pooling Unpooling Transposed Convolution
(after cropping borders)

I Subsampled 2× 2 result unpooled to a sparse 4× 4 result that is then
filled in via transposed convolution.

I Repeatedly upsample to obtain output of the same size as input.
I To generate images, use identity function at output.
I To generate pixel labels, use sigmoid or softmax.

Nazar Khan Computer Vision 30 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

FCN for Semantic Segmentation2

Each output pixel belongs to one of 21 classes.

2Segment image regions corresponding to different objects and find class of each object
as well.
Nazar Khan Computer Vision 31 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

DeconvNet for Semantic Segmentation

Nazar Khan Computer Vision 32 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Residual Block

Standard propagation through two layers.

Nazar Khan Computer Vision 33 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Residual Block

Skip connection between two layers.

Nazar Khan Computer Vision 34 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Residual Block

Weight layer

Weight layer

If F (x) approaches zero for any reason (e.g. due to weight regularization), the
original input x can still be carried through.
Nazar Khan Computer Vision 35 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Summary

I CNNs exploit local correlation of images.
I 1× 1 convolutions reduce computations and can be used to control

number of channels.
I Depthwise separable convolutions also reduce parameters and

computations.
I Unpooling and transposed convolution can reverse the effects of

subsampling to generate “images”.
I Fully convolutional networks can operate on images of arbitrary size. No

fully connected layers.
I Residual blocks avoid vanishing gradients.

Nazar Khan Computer Vision 36 / 36


	CNN
	11 Conv
	Depthwise Separable Conv
	Transposed Conv
	Unpooling
	FCN
	Residual Blocks

