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A Neuron as a Detector

I A neuron can be viewed as a detector.
I When it fires, the input must have been similar to its weights.

I Firing =⇒ wTx was high =⇒ w was similar to x
I So neuron firing indicates detection of something similar to its weights.

uTv = ‖u‖‖v‖ cos θ

I Since −1 ≤ cos θ ≤ 1, uTv is highest when cos θ = 1
I That happens when θ = 0
I That happens when vectors u and v point in the same direction.
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Convolutional Neural Networks

I Now we will look at networks that produce neuronal output via
convolution.

I Known as Convolutional Neural Networks (CNNs).
I Most frequently used network architecture.
I Exploits local correlation of inputs.
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Building Blocks of CNNs
Viewing convolution as neurons

Single channel input

�

����(� ∗ )�1

Subsample

�1

∗

Multichannel input

�

����(� ∗ )�1

Subsample

�1

∗

Nazar Khan Computer Vision 4 / 36



Building blocks of CNNs
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Building blocks of CNNs
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CNN

I Convolution by M filters produces M channels.
I They represent an M-channel transformation of the input image I .
I This M-channel image can now be transformed further via additional

convolution filters.
I Convolution-subsampling block can be repeated multiple times.
I I → M1 channels → M2 channels → · · · → Mb channels → flattening →

MLP.

�
Conv+Subsample

6 filters
Conv+Subsample

12 filters
Flattening

40 × 40 × 3 20 × 20 × 6 10 × 10 × 12 1200 × 1

Fully
connected

MLP
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Convolutional layer

I Consists of multiple arrays of neurons. Each such array is called a slice or
more accurately feature map.

I Each neuron in a feature map
I is connected to only few neurons in the previous layer, but
I uses the same weight values as all other neurons in that feature map.

I So within a feature map, we have both
I local receptive fields, and
I shared weights.
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Convolutional layer

I Example: A feature map may have
I 100 neurons placed in a 10× 10 array, with
I each neuron getting input from a 5× 5 patch of neurons in the previous

layer (receptive field), and
I the same 26(= 5× 5+ 1) weights shared between these 100 neurons.

I Viewed as detectors, all 100 neurons detect the same 5× 5 pattern
but at different locations of the previous layer.

I Different feature maps will learn1 to detect different kinds of patterns.
I For example, one feature map might learn to detect horizontal edges while

others might learn to detect vertical or diagonal edges and so on.

1based on their learned weights
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Convolutional layer

I To compute activations of the 100 neurons, a dot-product is computed
between the same shared weights and different 5× 5 patches of previous
layer neurons.

I This is equivalent to sliding a window of weights over the previous
layer and computing the dot-product at each location of the
window.

I Therefore, activations of the feature map neurons are computed via
convolution of the previous layer with a kernel comprising the shared
weights. Hence the name of this layer.

Nazar Khan Computer Vision 10 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Subsampling layer

I Reduces the spatial dimensions of the previous layer by downsampling.
Also called pooling layer.

I Example: downsampling previous layer of n × n neurons by factor 2 yields
a pooled layer of n

2 ×
n
2 neurons.

I No adjustable weights. Just a fixed downsampling procedure.
I Reduces computations in subsequent layers.
I Reduces number of weights in subsequent layers. This reduces overfitting.
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Subsampling

I Options: From non-overlapping 2× 2 patches
I pick top-left (standard downsampling by factor 2)
I pick average (mean-pooling)
I pick maximum (max-pooling)
I pick randomly (stochastic-pooling)

I Fractional max-pooling: pick pooling region randomly.

Figure: Max-pooling with 2× 2 receptive fields, and stride of 2 neurons. Source:
http://cs231n.github.io/convolutional-networks/
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Subsampling

I The options in the last slide discard 75% of the data.
I They correspond to

I neurons with 2× 2 receptive fields, and
I stride of 2 neurons.

I This is the most commonly used configuration. Other options exist but
note that pooling with larger receptive fields discards too much data.

I Subsampling layer can be skipped if convolution layers uses stride>1 since
that also produces a subsampled output.
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Subsampling

A pooling layer
I with F × F receptive field and stride S ,
I "looking at" a W1 × H1 × D1 input volume,
I produces a W2 × H2 × D2 output volume, where

I W2 = W1−F
S + 1

I H2 = H1−F
S + 1

I D2 = D1.
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Fully Connected Layers

I After flattening, fully connected layers(s) can be used.
I The last layer has

I neurons equal to the desired output size, and
I activation functions based on the problem to be solved.

I The flattened layer can therefore be viewed as a transformation φ(x) that
is fed into a sub-network of fully connected layers.

I Similarly, outputs of earlier layers are intermediate representations of the
input.
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Intermediate Representations

Intermediate feature representations. Early layers form simple, low-level representations of
the input. They are used to incrementally form more complex, high-level representations.

Source: http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf
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Cost of Convolution Layer

Conv

Cost = # multiplications = (128× 128× 64)︸ ︷︷ ︸
Output neurons

× (5× 5× 256)︸ ︷︷ ︸
Cost per neuron

= 6710886400
= 6.7 billion
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1× 1 convolution

ConvConv

Cost =

(128× 128× 32)︸ ︷︷ ︸
Output neurons

× (1× 1× 256)︸ ︷︷ ︸
Cost per neuron

+

(128× 128× 64)︸ ︷︷ ︸
Output neurons

× (5× 5× 32)︸ ︷︷ ︸
Cost per neuron


= 134217728+ 838860800
= 973078528 = 0.97 billion

Almost 7 times reduction in number of multiplications to produce output
volume of the same size.
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1× 1 convolution

I A 1× 1 convolution is just a linear combination of the input channels.
I The fully connected layer of a traditional MLP can also be represented via

1× 1 convolutions.
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Depthwise Separable Convolution
What happens in standard convolution?

Consider the case of standard convolution using 3 filters.

Conv

Number of weights to produce 3 channel output = 3× 3× 6× 3 = 162.
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Depthwise Separable Convolution
What happens in standard convolution?

The first output channel is produced by 6 channel-wise convolutions that are
then added together.

Sum
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Depthwise Separable Convolution
What happens in standard convolution?

Summation of per-channel results corresponds to 1× 1 convolution with a
volume of 1s.

Sum
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Depthwise Separable Convolution

Replace sum by a linear combination. This is called a depthwise separable
convolution.
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Depthwise Separable Convolution

Multiple linear combinations lead to multiple output channels.

Number of weights to produce 3 channel output = (3× 3× 6) + (6× 3) = 72.

Expensive convolution (excluding the summation) is performed only once.
Multiple channels are produced via cheap 1× 1 convolution.
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Transposed Convolution

3 -1 5

17 5 4

0 9 13

A transposed convolution superimposes copies of the filter F scaled by the
values in input I . Can be used to increase size.

+
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Unpooling

X

X

XX

Input Pooling Unpooling

Reverses the size reduction effect of subsampling.
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Fully Convolutional Networks (FCN)

I An architecture for semantic segmentation.
I Only locally connected layers: convolution, pooling and upsampling.
I No fully connected layers (fewer parameters, faster training).
I Input image can be of any size.
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The problem with fully connected layers

32 C+S 64 C+S Flatten

I K -class classification of an input image requires K softmax neurons at the
output.

I 1024 neurons in fully connected layer imply that H ×W must equal 256.
I So this can work with images of a certain size.
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Fully Convolutional Networks

32 C+S 64 C+S 4 1x1 convolutions Global
Pooling

I K 1× 1 convolutions corresponding to K classes.
I Followed by global pooling in each of the K channels.
I Followed by softmax.
I Can work with images of any size.
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Image Generation via CNN

4 6

-8 23

4

6

-8 23

Pooling Unpooling Transposed Convolution
(after cropping borders)

I Subsampled 2× 2 result unpooled to a sparse 4× 4 result that is then
filled in via transposed convolution.

I Repeatedly upsample to obtain output of the same size as input.
I To generate images, use identity function at output.
I To generate pixel labels, use sigmoid or softmax.
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FCN for Semantic Segmentation2

Each output pixel belongs to one of 21 classes.

2Segment image regions corresponding to different objects and find class of each object
as well.
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DeconvNet for Semantic Segmentation
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Residual Block

Standard propagation through two layers.
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Residual Block

Skip connection between two layers.

Nazar Khan Computer Vision 34 / 36



CNN 1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Residual Block

Weight layer

Weight layer

If F (x) approaches zero for any reason (e.g. due to weight regularization), the
original input x can still be carried through.
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Summary

I CNNs exploit local correlation of images.
I 1× 1 convolutions reduce computations and can be used to control

number of channels.
I Depthwise separable convolutions also reduce parameters and

computations.
I Unpooling and transposed convolution can reverse the effects of

subsampling to generate “images”.
I Fully convolutional networks can operate on images of arbitrary size. No

fully connected layers.
I Residual blocks avoid vanishing gradients.
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