CS-565 Computer Vision

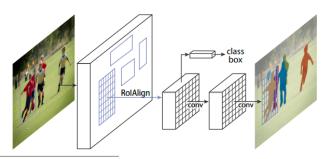
Nazar Khan

Department of Computer Science University of the Punjab

24. Mask R-CNN

Mask R-CNN

- Comprehensive model for
 - 1. Object detection
 - 2. Classification
 - 3. Semantic Segmentation
- ► Elegantly combines multiple ideas from CV and DL.

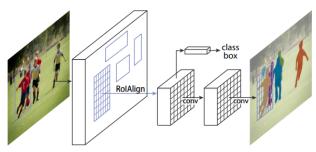


Kaiming He et al. "Mask R-CNN". In: *CoRR* abs/1703.06870 (2017). arXiv: 1703.06870. URL: http://arxiv.org/abs/1703.06870.

Nazar Khan Computer Vision 2/20

Mask R-CNN

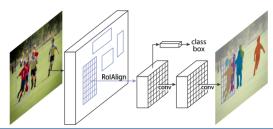
- 1. Extract features through a CNN.
- 2. Select image regions *potentially* containing objects.
- 3. For each potential object region, use CNN features of that region to
 - 3.1 classify,
 - 3.2 localize, and
 - **3.3** segment the object.



Nazar Khan Computer Vision 3/20

Outline with terminology

- 1. Backbone Network: CNN for feature extraction.
- 2. Region Proposal Network (RPN): detects image regions potentially containing objects.
- 3. For each proposed region
 - 3.1 Region of Interest Align (ROIAlign): Extract backbone CNN features.
 - 3.2 Classify
 - 3.3 Predict Bounding Box
 - 3.4 Predict Segmentation Mask: Pixel level classification into object and background.



Nazar Khan Computer Vision 4/20

Stage 1: Backbone Network

- Any CNN can work.
- Primary purpose is to extract
 - 1. multi-scale features that are
 - 2. rich with meaning (semantics)
- \blacktriangleright A very good example is the *feature pyramid network*².

Nazar Khan Computer Vision 5/20

²Tsung-Yi Lin et al. "Feature Pyramid Networks for Object Detection". In: *CoRR* abs/1612.03144 (2016). arXiv: 1612.03144. URL: http://arxiv.org/abs/1612.03144.

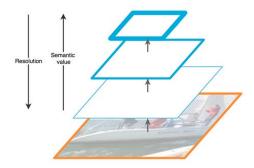
Feature Pyramid

- ▶ Recall that a Gaussian pyramid is a multi-scale image representation.
- SIFT descriptors from a Gaussian pyramid represent a *feature pyramid*.
- CNNs are inherently multi-scale because of subsampling.
- But why use the lowest-resolution scale only?

Nazar Khan Computer Vision 6/20

Feature Pyramid

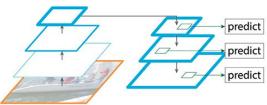
- Deep layers represent lower spatial resolution but higher semantic value.
- Shallow layers represent higher spatial resolution but lower semantic value.



Computer Vision Nazar Khan 7/20

Stage 1: Feature Pyramid Network

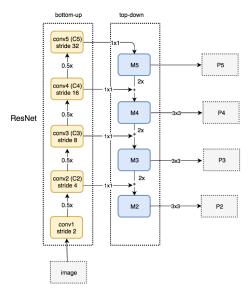
► Recompute high-res features *from* sematically-rich low-res features.



▶ Add lateral skip connections to *improve localization* and *stabilize training*.

Nazar Khan Computer Vision 8/20

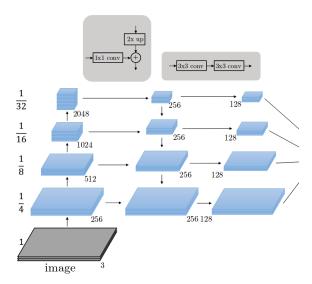
Stage 1: Feature Pyramid Network



Nazar Khan Computer Vision 9/20

Stage 1: Feature Pyramid Network

Stage 1: Feature Pyramid Network



Nazar Khan Computer Vision 10/20

Stage 2: Region Proposal Network

A binary classifier that proposes image regions that can potentially contain some object.

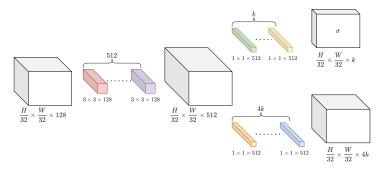


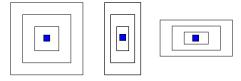
Figure: Region proposal network. Author: N. Khan (2021)

Shaoqing Ren et al. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.". In: *NIPS*. ed. by Corinna Cortes et al. 2015, pp. 91–99.

Nazar Khan Computer Vision 11/20

Stage 2: Region Proposal Network Anchor Boxes

- \blacktriangleright A set of K=9 boxes around one location.
- 3 aspect ratios and 3 scales.



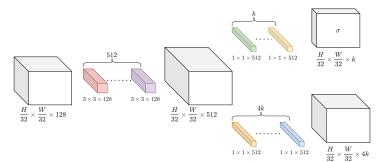
- Implicit assumption: object centered at a location can be covered by one of the K boxes.
- ▶ RPN will *refine* these K fixed anchor boxes to cover the object more accurately.

Nazar Khan Computer Vision 12/20

Stage 2: Region Proposal Network Interpretation of output

For each of the K=9 anchor boxes at each location,

- Classification head produces $P(\text{object}|\text{box}_k)$.
- Regression head edits/refines the fixed anchor boxes.
 - $\triangleright \Delta_{\mathsf{x}}, \Delta_{\mathsf{v}}, \Delta_{\mathsf{w}}, \Delta_{\mathsf{h}}$
 - ▶ predicted box_k ← anchor box_k + $(\Delta_x, \Delta_v, \Delta_w, \Delta_h)$



Nazar Khan Computer Vision 13/20

Ground-truth for anchor boxes can be constructed using actual GT boxes

$$p_i^* = \begin{cases} 1 & \text{highest IoU with a GT box} \\ 1 & \text{IoU} > 0.7 \text{ with } \textit{any GT box} \\ -1 & \text{IoU} < 0.3 \text{ with } \textit{all GT boxes} \\ 0 & \text{otherwise} \end{cases}$$

- Anchors that are neither positive nor negative are not used for training.
- Use cross-entropy loss for classification head

$$L_{\sf cls}(\{p_i, p_i^*\}) = -\sum_{i: p_i^*
eq 0} p_i^* \log p_i + (1-p_i^*) \log (1-p_i)$$

Nazar Khan Computer Vision 14/20

Stage 2: Region Proposal Network

▶ Use ℓ_1 -loss on *positive anchors* for regression head

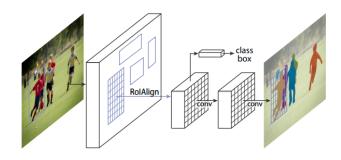
$$L_{\text{reg}}(\{\mathbf{b}_i, \mathbf{b}_i^*\}) = \sum_{i: p_i^* = 1} \|\mathbf{b}_i - \mathbf{b}_i^*\|_1$$

Overall RPN loss

$$L_{\mathsf{RPN}}(\left\{p_i, p_i^*\right\}, \left\{\mathbf{b}_i, \mathbf{b}_i^*\right\}) = L_{\mathsf{cls}}(\left\{p_i, p_i^*\right\}) + \lambda L_{\mathsf{reg}}(\left\{\mathbf{b}_i, \mathbf{b}_i^*\right\})$$

Nazar Khan Computer Vision 15 / 20

Stage 3: RolAlign



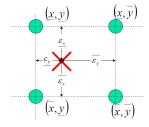
Nazar Khan Computer Vision 16/20

Stage 3: RolAlign

Stage 3: RolAlign

Bilinear Interpolation: Lesson from Image Warping

Recall that for warping images, to find the color at real coordinates (x', y') we interpolated from the 4 *quantized* neighbours.



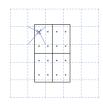
Color could be a scalar gray-scale value or it could be an RGB vector!

$$I'(x',y') = \bar{\epsilon_x}\bar{\epsilon_y}I(\underline{x},y) + \epsilon_x\bar{\epsilon_y}I(\bar{x},y) + \bar{\epsilon_x}\epsilon_yI(\underline{x},\bar{y}) + \epsilon_x\epsilon_yI(\bar{x},\bar{y})$$

Nazar Khan Computer Vision 17/20

Stage 3: RolAlign

- \triangleright Given real location (x', y'), we can interpolate the CNN feature vector as well.
- ▶ RolAlign step: Given a bounding box with *real* coordinates
 - 1. Make a uniform grid of (real) locations within the bounding box.
 - 2. Bilinearly interpolate CNN features for each location.

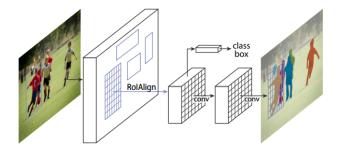


▶ Yields a *fixed-size feature volume* irrespective of bounding box size.

Nazar Khan Computer Vision 18/20

Stage 4: Classification, Localization, Segmentation

- From each ROIAlign feature volume,
 - predict class probabilities via softmax,
 - predict per-class bounding boxes via regression, and
 - predict instance segmentation mask via logistic sigmoid.
- Training images contains GT for all three predictions.
- Multi-task loss function.



Nazar Khan Computer Vision 19/20

Summary

- We have covered the architecture of the Mask R-CNN, a state-of-the-art model for multiple CV tasks.
- Design decisions reflect the evolution of CV as well.
- ► An excellent example of multi-task learning.

Nazar Khan Computer Vision 20 / 20