CS-565 Computer Vision

Nazar Khan

Department of Computer Science
University of the Punjab
2. Background Mathematics

Notation

- Scalars are denoted by lower-case letters like s, a, b.
- Vectors are denoted by lower-case bold letters like $\mathbf{x}, \mathbf{y}, \mathbf{v}$.
- Matrices are denoted by upper-case bold letters like M, D, A.
- Any vector $\mathrm{x} \in \mathbb{R}^{d}$ is by default a column vector.

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right]
$$

- The corresponding row vector is obtained as $\mathbf{x}^{T}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{d}\end{array}\right]$.

Inner Product

For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$

- Inner product is a scalar value.

$$
\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{d} y_{d}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

where θ is the angle between vectors x and y .

- Also called dot product or scalar product. Other representations:

$$
\mathbf{x} \cdot \mathbf{y},(\mathbf{x}, \mathbf{y}) \text { and }<\mathbf{x}, \mathbf{y}>
$$

- Represents similarity of vectors.
- If $\mathbf{x}^{T} \mathbf{y}=0$, then \mathbf{x} and \mathbf{y} are orthogonal vectors (in 2 D , this means they are perpendicular).

Euclidean Norm

- Euclidean norm of vector

$$
\|\mathbf{x}\|=\sqrt{\mathbf{x}^{T} \mathbf{x}}=\sqrt{x_{1} x_{1}+x_{2} x_{2}+\cdots+x_{d} x_{d}}
$$

represents the magnitude of the vector.

- Euclidean distance between points x and y can be computed as

$$
\begin{aligned}
\|\mathbf{x}-\mathbf{y}\| & =\sqrt{(\mathbf{x}-\mathbf{y})^{T}(\mathbf{x}-\mathbf{y})} \\
& =\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{d}-y_{d}\right)^{2}}
\end{aligned}
$$

- Unit vector has norm 1. Also called normalised vector.
- If $\|\mathbf{x}\|=1$ and $\|\mathbf{y}\|=1$, and $\mathbf{x}^{T} \mathbf{y}=0$, then x and y are orthonormal vectors.

Outer Product

For vectors $\mathrm{x} \in \mathbb{R}^{d}$ and $\mathrm{z} \in \mathbb{R}^{k}$

- Outer-product $\mathbf{x z}^{T}$ is a $d \times k$ matrix.

$$
\mathbf{x z}^{T}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right]\left[\begin{array}{llll}
z_{1} & z_{2} & \ldots & z_{k}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} z_{1} & x_{1} z_{2} & \ldots & x_{1} z_{k} \\
x_{2} z_{1} & x_{2} z_{2} & \ldots & x_{2} z_{k} \\
\vdots & \vdots & \vdots & \vdots \\
x_{d} z_{1} & x_{d} z_{2} & \ldots & x_{d} z_{k}
\end{array}\right]
$$

Matrix and Vector Calculus

For vector $\mathrm{x} \in \mathbb{R}^{d}$, scalar function $f(\mathrm{x})$ and vector function $\mathrm{g}(\mathrm{x}) \in \mathbb{R}^{k}$

- The gradient operator $\frac{d}{d x}$ is also written as ∇_{x} or simply ∇ when the differentiation variable is implied.
- $\nabla_{\mathrm{x}}=\left[\begin{array}{c}\frac{\partial}{\partial x_{1}} \\ \frac{\partial}{\partial x_{2}} \\ \vdots \\ \frac{\partial}{\partial x_{d}}\end{array}\right]$ so that $\nabla_{\mathrm{x}}(f(\mathrm{x}))=\frac{d}{d \mathbf{x}}(f(\mathrm{x}))=\left[\begin{array}{c}\frac{\partial f(\mathrm{x})}{\partial \mathrm{x})} \\ \frac{\partial(\mathrm{x})}{\partial x_{2}} \\ \vdots \\ \frac{\partial f(\mathrm{x})}{\partial x_{d}}\end{array}\right]$
$-\nabla_{x}(g(x))=\frac{d}{d x}(g(x))=\left[\begin{array}{cccc}\frac{\partial g_{1}(x)}{\partial x} & \frac{\partial g_{2}(x)}{\partial x} & \cdots & \frac{\partial g_{k}(x)}{} \\ \frac{\partial g_{1}(x)}{} & \frac{\partial g_{2}(x)}{\partial x_{2}} & \cdots & \frac{\partial g_{k}(x)}{\partial x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_{1}(x)}{\partial x_{d}} & \frac{\partial g_{2}(x)}{\partial x_{d}} & \cdots & \frac{\partial g_{k}(x)}{\partial x_{d}}\end{array}\right]$

Matrix and Vector Calculus

For vectors $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{d}$ and matrices $\mathrm{M} \in \mathbb{R}^{k \times d}$ and $\mathrm{A} \in \mathbb{R}^{d \times d}$

- $\nabla_{\mathbf{x}}\left(\mathbf{y}^{T} \mathbf{x}\right)=\nabla_{\mathrm{x}}\left(\mathrm{x}^{\top} \mathbf{y}\right)=\mathbf{y}$
- $\nabla_{\mathrm{x}}(\mathrm{Mx})=\mathrm{M}^{T}$
- $\nabla_{\mathrm{x}}\left(\mathrm{x}^{T} \mathbf{A x}\right)=\left(\mathbf{A}+\mathbf{A}^{T}\right) \mathbf{x}$
- For symmetric $\mathbf{A}, \nabla_{x}\left(x^{T} \mathbf{A x}\right)=2 \mathbf{A x}$

Matrices as linear operators

- In a matrix transformation Mx , components of x are acted upon in a linear fashion.

$$
\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
m_{11} x_{1}+m_{12} x_{2} \\
m_{21} x_{1}+m_{22} x_{2}
\end{array}\right]
$$

- Every matrix multiplication represents a linear transformation.
- Every linear transformation can be represented as a matrix multiplication.

Eigenvectors

- When a square matrix \mathbf{M} is multiplied with a vector \mathbf{v}, the vector is linearly transformed.
- Rotation/Shearing/Scaling
- Scaling does not change the direction of the vector.
- If vector $\mathbf{M v}$ is only a scaled version of \mathbf{v}, then \mathbf{v} is called an eigenvector of M .
- That is, if v is an eigenvector of M then

$$
\mathbf{M} \mathbf{v}=\lambda \mathbf{v}
$$

where scaling factor λ is also called the eigenvalue of M corresponding to eigenvector \mathbf{v}.

Minimization

What is the slope/derivative/gradient at the minimizer $x^{*}=0$?

Minimization

Local vs. Global Minima

Global
Minimum

- Stationary point: where derivative is 0 .
- A stationary point can be a minimum or a maximum.
- A minimum can be local or global. Same for maximum.

Constrained Optimization

- For optimizing a function $f(\mathbf{x})$, the gradient of f must vanish at the optimizer x^{*}.

$$
\left.\nabla f\right|_{\mathbf{x}^{*}}=\mathbf{0}
$$

- For optimizing a function $f(x)$ subject to some constraint $g(x)=0$, the gradient of the so-called Lagrange function

$$
L(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})
$$

must vanish at the optimizer \mathbf{x}^{*}. That is,

$$
\nabla L(\mathbf{x}, \lambda)=\left.\nabla f\right|_{\mathbf{x}^{*}}+\left.\lambda \nabla g\right|_{\mathbf{x}^{*}}=\mathbf{0}
$$

where λ is the Lagrange (or undetermined) multiplier.

Constrained Optimization

- Quite often, we will need to maximize $x^{T} M x$ with respect to x where M is a symmetric, positive-definite ${ }^{1}$ matrix.
- Trivial solution: $\mathbf{x}=\mathbf{i n f}$
- To prevent trivial solution, we must constrain the norm of \mathbf{x}. For example, $x^{T} \mathbf{x}=1$.
- This gives us a constrained optimization problem.

$$
\begin{aligned}
& \text { Maximize } f(\mathrm{x})=\mathrm{x}^{T} \mathrm{M} \mathrm{x} \text { subject to the constraint } \\
& g(\mathrm{x})=\mathrm{x}^{T} \mathrm{x}-1=0
\end{aligned}
$$

- Lagrangian becomes $L(\mathbf{x}, \lambda)=\mathbf{x}^{T} \mathbf{M} \mathbf{x}+\lambda\left(1-\mathbf{x}^{T} \mathbf{x}\right)$
- Use $\nabla_{\mathbf{x}} L_{\mathbf{x}^{*}}=0$ and $\nabla_{\lambda} L_{\lambda^{*}}=0$ to solve for optimal x^{*}.

[^0]
Taylor Series Approximation

- If values of a function $f(a)$ and its derivatives $f^{\prime}(a), f^{\prime \prime}(a), \ldots$ are known at a value a, then we can approximate $f(x)$ for \underline{x} close to a via the Taylor series expansion

$$
f(x) \approx f(a)+(x-a)^{1} \frac{f^{\prime}(a)}{1!}+(x-a)^{2} \frac{f^{\prime \prime}(a)}{2!}+(x-a)^{3} \frac{f^{\prime \prime \prime}(a)}{3!}+O\left((x-a)^{4}\right)
$$

- For example, for x around $a=0$
- $\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$
- $e^{x} \approx 1+\frac{x^{1}}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots$
- It is often convenient to use the first-order Taylor expansion

$$
f(x) \approx f(a)+(x-a) f^{\prime}(a)
$$

Taylor Series Approximation

Not very useful for x not close to a

Figure: The $\sin ()$ function (blue) is closely approximated around 0 by its Taylor polynomials. The 7th order approximation (green) is good for a full period centered at 0 . However, it becomes poor for $|x-0|>\pi$.

Image Coordinates

Cartesian axis

+ ve x-axis from left to right. + ve y-axis goes upwards.

Image axis

+ ve x-axis goes downwards.
+ ve y-axis from left to right.

For both coordinate systems, angles are always measured in counter-clockwise direction from positive x-axis.

Image Coordinates

Rotate by 90° anticlockwise

By rotating the axis, the mathematics on the image axes will remain the same as for the Cartesian axes. For example, a line in the image can still be represented via $y=m x+c$ and slope $m=\tan \theta$.

Take-home Quiz 1

1. (4 marks) For vectors $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{d}$ and matrices $\mathrm{M} \in \mathbb{R}^{k \times d}$ and $\mathrm{A} \in \mathbb{R}^{d \times d}$, prove the following derivatives.
$1.1 \nabla_{\mathbf{x}}\left(\mathbf{y}^{\top} \mathbf{x}\right)=\nabla_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{y}\right)=\mathbf{y}$
$1.2 \nabla_{\mathrm{x}}(\mathrm{Mx})=\mathrm{M}^{\top}$
$1.3 \nabla_{\mathrm{x}}\left(\mathbf{x}^{T} \mathbf{A x}\right)=\left(\mathbf{A}+\mathbf{A}^{T}\right) \mathbf{x}$
$1.4 \nabla_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)=2 \mathbf{A} \mathbf{x}$ when \mathbf{A} is symmetric
2. (6 marks) For a symmetric, positive-definite matrix \mathbf{A}, show that the non-trivial maximizer of $x^{\top} \mathbf{A} x$ is the eigenvector of \mathbf{A} corresponding to the largest eigenvalue.

[^0]: ${ }^{1} \mathrm{x}^{\top} \mathrm{Mx}>0$ for all $\mathrm{x} \neq \mathbf{0}$

